VAMP 321

Система дуговой защиты

Краткое руководство

Уведомление

Авторское право

© ООО «Vamp». 2011. Все права защищены.

Отказ от ответственности

000 «Vamp» любые не несет ответственности 38 последствия, вытекающие из использования данного документа. Этот документ не является учебным пособием для неспециалистов. В данном документе даются указания по установке устройства, вводу в эксплуатацию и по эксплуатации. Тем не менее, данное руководство не может охватить все мыслимые обстоятельства или включить подробную информацию по всем темам. В случае возникновения вопросов или конкретных проблем, не действий следует предпринимать никаких без соответствующего разрешения. Свяжитесь с ООО «Vamp» и запросите всю необходимую информацию.

Контактная информация

ООО «VAMP» A/я 810 FIN-65101 Vaasa, Finland Aдрес: улица, Yrittajankatu 15

Телефон: +358 (0)20 753 3200

Факс: +358 (0)20 753 3205 Веб-сайт: http://www.vamp.fi

Безопасность

• Несоблюдение данных инструкций может привести к смерти или серьезным травмам.

- Только квалифицированный персонал должен устанавливать данное оборудование. Внимательно прочитайте инструкции данного руководства прежде, чем приступать к работе с оборудованием.
- Отключите данное оборудование от всех источников питания перед началом монтажных работ.
- Убедитесь в том, что подключено защитное заземление.
- Перед выполнением визуального осмотра, ввода в эксплуатацию и производства технического обслуживания данного оборудования, следует отключить систему от всех источников энергии.
- Не забывайте, что все цепи находятся под напряжением, пока они полностью не обесточены, проверены и отключены. Обратите особое внимание на схему питания. Обращайте внимание на все источники энергии, в том числе возможность обратной подачи тока.
- Остерегайтесь возможной опасности, надевайте средства индивидуальной защиты, внимательно осмотрите рабочее место, инструмент и оснастку, которые могут быть использованы при вводе в эксплуатацию и обслуживании.
- Несоблюдение основных требований установки, может привести к серьезным травмам, а также повреждениям электрического оборудования или другого имущества.
- Работа с данным оборудованием требует соответствующего опыта в области охраны электрических сетей. Только специалистам, имеющим опыт работы в данной сфере, разрешено настраивать и устанавливать данное оборудование.

 Перед выполнением испытаний мегомметром на любом оборудовании, в котором установлено ИЭУ, следует отсоединить все входные и выходные кабели, подсоединенные к ИЭУ. Испытания повышенным напряжением могут повредить электронные компоненты, находящиеся в блоке.

NOTICE

- Всегда используйте только исправные измерительные устройства для проверки отсутствия напряжения. Перед проведением измерений проверьте устройство на участке цепи заведомо находящейся под напряжением.
- Успешная работа оборудования зависит от правильности монтажа, наладки и эксплуатации.

Содержание	
Уведомление	3
Безопасность	4
1. Введение	8
1.1. Цель	8
1.2. Сопутствующие документы	8
1.3. Символы и условные обозначения	9
1.3.1. Символы	9
1.3.2. Условные обозначения	9
1.4. Внесенные изменения	9
2. Монтаж	10
3. Блок схема	11
4. Система дуговой защиты VAMP 321	12
4.1. VAMP 321	12
4.1.1. Передняя панель центрального блока	13
4.1.2. Задняя панель	16
4.1.3. Меню системы дуговой защиты	19
4.2. Устройства ввода-вывода VAM	24
4.3. Настройка и конфигурирование VAMPSET	24
5. Образец применения	25
5.1. Мультизональная система дуговой зац	ЦИТЫ
VAMP 321	25
5.1.1. Соединение устройств	27
5.1.2. Конфигурирование VAM 12LD	27
5.1.3. Подключение напряжения питания	29
5.2. Конфигурирование системы	29
5.2.1. Настройка связи	29
5.2.2. Изменение значения напряжения и трансф	op-
маторов тока	31
5.2.3. Установка дуговых датчиков и блоков ввс	уда /
вывода	32
5.3. Конфигурирование дуговой защиты	32
5.3.1. Конфигурирование матрицы тока	32
5.3.2. Конфигурирование световой матрицы	33
5.3.3. Конфигурирование матрицы выпуска	34
5.3.4. Конфигурирование событии дуги	35
5.3.5. Конфигурирование названии светодиода	36
5.3.6. Конфигурирование регистратора наруши	ения
нормального режима	36
5.3.7. Запись параметров ИЭУ	38
5.3.8. Сохранение фаила документа VAMPSEI.	38
5.4. Проверка конфигурации	39
5.4.1. Испытания датчиков дуги	39
5.5. Коды неисправностей	39
6. Технические характеристики	40
6.1. VAMP 321	40
6.2. БЛОКИ ВВОДА-ВЫВОДА VAM	41
 Испытания и условия окружающей среды И личности и условия окружающей среды 	43
8. информация для заказа	45
8.1. VAMP 321	45

8.2. Дополнительные компоненты системы	46
9. Редакции	47
10.Глоссарий	48

1. 1.1.

Введение

Цель

Данный документ содержит инструкции по установке, наладке и эксплуатации системы дуговой защиты VAMP 321. Это руководство также содержит пример настройки системы защиты.

Данный документ предназначен для специалистов в электроэнергетике.

Данный документ содержит описание моделей устройств

VAMP 321 ААААА-ААААА-Ах и

VAMP 321 ABAAA-AAAAA-Ax.

1.2. Сопутствующие документы

Документ	Код*)
Монтаж и ввод в эксплуатацию VAMP	VMMCARCxxx
Система дуговой защиты VAMP	VM221.ENxxx
221 Эксплуатация и настройки	
конфигурации	
Техническое описание	
Система дуговой защиты VAMP	VMARCTEST.ENxxx
Руководство по выполнению	
испытаний	
(доступна с декабря 2011)	
VAMP Серия 300	AN300.ENxxx
Local HMI Список приборов	
сигнализации местной панели	
Настройка и конфигурирование	VMV.ENxxx
VAMPSET	
Руководство пользователя	

*) ххх = трехзначный номер, указывающий на номер версии

NOTICE

Скачивайте обновленные документы и программное обеспечение на сайте <u>www.vamp.fi</u>.

1.3.1.

1.3. Символы и условные обозначения

Символы

Символ	Описание
	Указывает на опасную ситуацию, которая, если ее не избежать, может привести к смерти или серьезным травмам.
	Указывает на опасную ситуацию, которая, если ее не избежать, может привести к смерти или тяжелым травмам.
	Указывает на опасную ситуацию, которая, если ее не избежать, может привести к небольшим или средним травмам.
NOTICE	Указывает на ситуации не связанные с получением травм.

1.3.2. Условные обозначения

Условное	Пример
Названия в меню	Откройте меню <i>File</i> .
представлены	
Кнопки в	Нажмите <i>ОК</i> .
программном	
Названия	Выберите the <i>Stage enabled parameter</i> .
параметров даны	
Значения	Значение параметра
параметров даны	Off.
Кнопки на	
местных панелях	Для входа в меню нажмите, Enter 🟼 🗲
представлены	
значками.	

1.4. Обновления

Обновление документа	Дата	Изменения
VM321.EN001	Октябрь	Первая версия

Монтаж

Рисунок 2-1 Монтаж и размеры VAMP 321

NOTICE

Для доп.информации см. Руководство по монтажу и вводу в экплуатацию

Рисунок 3-1 Блок-схема для VAMP 321 AB AAA AAAAA A1

4.

Система дуговой защиты VAMP 321

4.1.

VAMP 321

Система VAMP 321 (ИЭУ) включает в себя все функции дуговой защиты, такие как контроль тока и детектирование возникновения дугового замыкания. VAMP 321 имеет модульную конструкцию. Она оптимизирована для использования в электроустановках низкого и среднего напряжения. Систему можно применять как при новом строительстве ПС, так и интегрировать в существующие системы электроснабжения подлежащие реконструкции.

Система VAMP 321 имеет следующие технические характеристики:

- о Время срабатывания системы менее 7 миллисекунд
- о Измерение Трехфазного тока
- о Измерение Тока нулевой последовательности
- Один канал напряжение для измерений и вспомогательных функций
- Журналы событий, учет нарушений и часы реального времени
- о Информативный жидкокристаллический дисплей
- Четыре дискретных выхода на реле с перекидным контактом (программируются).
- Два дискретных выхода аварийной сигнализации «IF»
- о Программируемые зоны работы
- Непрерывная система самоконтроля

4.1.1. Передняя панель центрального блока

Рисунок 4.1.1-1 Передняя панель центрального блока VAMP 321

1 Светодиодный индикатор питания и семь программируемых светодиодов

- 2 Кнопка «OTMEHA»(CANCEL)
- 3 Кнопки навигации
- 4 Жидкокристаллический дисплей
- 5 Кнопка «ИНФО» (INFO)

6 Светодиодный индикатор неисправности (IF) и семь программируемых светодиодов

- 7 Кнопки функций
- 8 Локальный порт

Кнопки

Значок	Функция			
-	Кнопка CANCEL для возврата в предыдущее меню. Чтобы вернуться к первому пункту меню в главном меню, удерживайте кнопку не менее трех секунд.			
Î	Кнопка INFO для просмотра дополнительной информации, для просмотра ввода пароля и настройки контрастности ЖК-дисплея.			
F1	Программируемая кнопки функции.			
F2	Программируемая кнопки функции.			
	VAMP			

Значок	Функция			
	Кнопка ENTER для активации или подтверждения функции.			
	Кнопка навигации UP для перемещения вверх по меню или увеличения числового значения.			
	Кнопка навигации DOWN для перемещения вверх по меню или увеличения числового			
	Кнопка навигации LEFT для перемещения назад в параллельном меню или выбора цифры в числовое значение.			
	Кнопка навигации RIGHT для перемещения вперед в параллельном меню или выбора цифры в числовое значение.			

Светодиоды

Светодиоды в передней панели центрального блока могут быть сконфигурированы в VAMPSET. Чтобы настроить индикатор текстов на передней панели, тексты могут быть написаны по шаблону, а затем напечатаны на прозрачной пленке. Прозрачные пленки могут быть размещены в карманах у светодиодов.

Регулировка контраста дисплея

На центральной панели нажмите
 Введите четырехзначный пароль и нажмите
 Введите четырехзначный пароль и нажмите
 Нажмите
 И настройте контрастность.
 Для увеличения контрастности нажмите
 Для уменьшения контрастности нажмите
 Для возврата в главное меню нажмите

VM321QG.EN001

Перемещение по меню

Рисунок 4.1.1-2 Перемещение по меню, используя переднюю панель

параметра укажите пароль. Когда значение находится в режиме редактирования, его фон темный

4.1.2.

Задняя панель

Рисунок 4.1.2-1 Нумерация слотов и платы выбора подключений на задней панели VAMP 321

Слот Карта

- 1 Напряжение питания [V]
- 2 Плата ввода-вывода I
- 3...5 Платы ввода-вывода II...IV для будущего использования
- 6, 7 Платы ввода-вывода I и II для будущего использования
- 8 Плата аналогового измерения (I, U)
- 9, 10 Интерфейс связи І и II для будущего использования

- 1 Слот 1
- 2 Плата А
- 3 Соединитель 2
- 4 Вывод 1

VAMP 321 Штырьковые выводы 1/А/2:1...14

Номер	Обозна	Описание
вывода	чение	
14	+24V	Выход I/O – питание для блоков расширения
13	GND	Выход I/O – питание для блоков расширения
12	IF NO	Внутренняя неисправность реле, открытый
		контакт
11	IF NC	Внутренняя неисправность - реле,
		закрытый контакт
10	IF	Внутренняя неисправность - реле, общий
9	A1 NO	Аварийное реле 1, открытый контакт
8	A1 NC	Аварийное реле 1, закрытый контакт
7	A1	Аварийное реле 1, общий
6	T1	Быстродействующее реле 1 защиты дуги
5	T1	Быстродействующее реле 1 защиты дуги
4	NC	Нет связи
3	NC	Нет связи
2	L / + / \sim	Напряжение питания
1	N/-/~	Напряжение питания
🕂 WARNING Всегда подсоединяйте защитное		Всегда подсоединяйте защитное
		заземление перел полключением

питания.

IVAMP

Номер	Обозначен	Описание		
вывода	ие			
20	T4	Быстродействующее реле 4 защиты дуги		
19	T4	Быстродействующее реле 4 защиты дуги		
18	T3	Быстродействующее реле 3 защиты дуги		
17	T3	Быстродействующее реле 3 защиты дуги		
16	T2	Быстродействующее реле 2 защиты дуги		
15	T2	Быстродействующее реле 2 защиты дуги		
14	BI3	Бинарный выход 3		
13	BI3	Бинарный выход 3		
12	BI2	Бинарный выход 2		
11	BI2	Бинарный выход 2		
10	BI1	Бинарный выход 1		
9	BI1	Бинарный выход 1		
8	BO COM	Бинарный выход 13 общий		
7	BO3	Бинарный выход 3		
6	BO2	Бинарный выход 2		
5	BO1	Бинарный выход 1		
4	SEN2	Канал датчика дуги 2		
3	SEN2	Канал датчика дуги 2		
2	SEN1	Канал датчика дуги 1		
1	SEN1	Канал датчика дуги 1		

VAMP 321 Штырьковые выводы 2/B/1:1...20

VAMP 321 Штырьковые выводы 8/А/1:1...11

Номер	Обозначение	Описание
вывода		
1	IL1(S1)	Ток фазы L1 (S1)
2	IL1(S2)	Ток фазы L1 (S2)
3	IL2(S1)	Ток фазы L2 (S1)
4	IL2(S2)	Ток фазы L2 (S2)
5	IL3(S1)	Ток фазы L3 (S1)
6	IL3(S2)	Ток фазы L3 (S2)
7	Io1	Ток Io1 общий для 1А и
		5A (S1)
8	Io1/5A	Ток Io1 5А (S2)
9	Io1/1A	Ток Іо1 1А (S2)
10	Uo/ULL/ULN	Uo (da)/ ULL (a)/ ULN (a)
11	Uo/ULL/ULN	U0 (dn)/ ULL (b)/ ULN (n)

4.1.3.

Меню системы дуговой защиты

В меню системы дуговой защиты можно посмотреть либо на ЖК дисплее на передней панели, либо с помощью VAMPSET.

ДУГОВАЯ ЗАЩИТА

Рисунок 4.1.3-1 Меню дуговой защиты

<u> </u>	-		
Пункт	По	Диапазон	Описание
	умолчан	0 20	A 11 10 10
Настроики І	$1.20 \mathrm{xln}$	0.50	Φ asa L1, L2, L3
		8.00 xln	уровень перегрузки
			по току
Настройки Іо	1.20 xln	0.10	Уровень перегрузки
		5.00 xln	остаточного тока
Режим связи	Главны	Главный,	Режим связи ИУЭ
	й	Второстепенн	
		ый	
Установка	-	-, Установить	Устанавливает все
датчиков дуги и			подсоединенные блоки
блоки ввода-			ввола-вывола и латчики
вывода			
Состояние	Готово	Впроцессе	Состояние установки
VСТАНОВКИ	101020	установки	
yoranobitii		Готово	
		101000	
Отпустить фиксатор	-	-, Отпустить	Отпускает фиксатор с
			ИЭУ и блоков ввода-
			вывода
Сброс регистра	-	-, Очистить	Удаляет указания
блока ввода-вывода			блока ввода-вывода
Включение ступени	Вкл или	On, Off	Активирует
	Выкл		ступень защиты
			дуги
Задержка	0	0255	Задержка отключения
отключения [мс]			для уровня дуговой
			защиты

Группа параметров дуговой защиты

МАТРИЦА ДУГИ ТОК

VAMP

., .	•		\
Пункт	По	Диапазон	Описание
	умолчан		
	ию		
I>int.	-	On, Off	Фазы L1, L2, L3
			сигнал
Io>int.	-	On, Off	Сигнал перегрузки
			остаточного тока
I>ext.	-	On, Off	Внешний сигнал
			перегрузки по току
BI1BI3	-	On, Off	Двоичный выход 13
			Сигнал
Фаза дуги 18	-	On, Off	Фаза дуговой защиты

Группа параметров матрицы дуги (ток)

Матрица дуги - свет

Рисунок 4.1.3-3 Меню Матрицы дуги - свет

Группа параметров матрицы дуги (свет)

Пункт	По	Диапа	Описание
	умолчан	30H	
Датчик дуги	-	On,	Внутренний датчик
110		Off	дуги 110
Зона 14	-	On,	Световая зона дуги 14
BI13	-	On,	Двоичный выход 13
		Off	сигнал
Фаза дуги 17	-	On,	Фаза дуговой защиты 17
		Off	
			VAMP

МАТРИЦА ВЫПУСКА

Рисунок 4.1.3-4 Меню матрицы выпуска

Группа параметров МАТРИЦЫ ВЫПУСКА

Пункт	По	Диапазон	Описание
	vмолчанию		
Зафиксирован	-	On, Off	Фиксатор выпуска
Фаза дуги 18	-	On, Off	Фаза защиты 18
T14	-	On, Off	Отключить выходное реле
A1	-	On, Off	Сигнальное реле 1
BO13	-	On, Off	Двоичный выход 13
Зона 14	-	On, Off	Световая зона дуги 14
I>ext.	-	On, Off	Сигнал внешней
			перегрузки по току

Принцип взаимодействия матриц

При определении условий для активизации определенной фазы дуги, между выходами из матрицы света и матрицы тока ставится «логическое И».

Если на фазе дуги присутствует только одна матрица, фаза работает по принципу только свет или только ток.

Рисунок 4.1.3-5 Принцип взаимодействия матриц с операцией «логическое И».

ARC EVEN	ARC EVENT ENABLING			
	of the state of th			
Arc sensor 1 Arc sensor 2 Arc sensor 3 Arc sensor 4 Arc sensor 5 Arc sensor 6 Arc sensor 7 Arc sensor 9 Arc sensor 9 Arc sensor 9 Arc sensor 10 Arc stage 1 Arc stage 2 Arc stage 3 Arc stage 4 Arc stage 4 Arc stage 5 Arc stage 7 Arc stage 7 Arc stage 8 Zone 1 Zone 2 Zone 3 Zone 4	Image: Constraint of the second sec			

Включение журнала событий

Рисунок 4.1.3-6 Меню включения журнала событий

Г	n			DAMAT	DOP.	WVDL		205	гітий
	2	y i ii i u	nu		POB.	ͲʹͷϷϲ	unu	200	

Пункт	По	Диапазо	Описание
	<u>умолчан</u>	Н	
Датчик дуги110	-	On, Off	Датчик дуговой вспышки
Фаза дуги 18	-	On, Off	Фаза дуговой защиты
			18
Зона 14	-	On, Off	Световая зона дуги 14
I>ext.	-	On, Off	Сигнал внешней
			перегрузки по току
Событие Включение	-	On, Off	Включение журнала
			событий
Событие Выключен	-	On, Off	Включение журнала
ие'			событий

4.2.

Устройства ввода-вывода VAM

NOTICE

Для получения доп.информации по блокам ввода-вывода, такой как описания панели и программируемого переключателя, см.документацию к VAMP 221.

Блоки ввода-вывода VAM

Блок ввода- вывода	Описание
VAM 4C VAM 4CD	Блок ввода / вывода тока, является связующим звеном между токовым входом системы и ИЭУ. Каждый блок ввода / вывода связан с тремя трансформаторами тока и одним выключателем.
VAM 3L VAM 3LX	Блок ввода / вывода волоконного датчика, является связующим звеном между волоконными датчиками системы и ИЭУ. Каждый блок ввода / вывода связан с тремя датчиками дуги, одним контактным датчиком и одним выключателем.
VAM 10L VAM 10LD	Точечный датчик блок ввода / вывода, является связующим звеном между точечными датчиками системы и ИЭУ. Каждый блок ввода-вывода связан с десятью датчиками дуги, одним переносным контактным датчиком и одним выключателем.
VAM 12L VAM 12LD	Точечный датчик блок ввода / вывода, является связующим звеном между точечными датчиками системы и ИЭУ. Каждый блок ввода-вывода связан с десятью датчиками дуги, одним переносным контактным датчиком и тремя выключателями.

4.3. Установка и настройка инструментов VAMPSET

VAMPSET это программный инструмент для настройки и конфигурирования ИЭУ Vamp. VAMPSET имеет графический интерфейс, а созданные документы могут быть сохранены и распечатаны для дальнейшего использования.

Для работы с VAMPSET, вам понадобится:

- ПК с установленной ОС Windows XP (или новее)
- VX052 или эквивалентный кабель USB для подключения ИЭУ к ПК
- Опыт работы с операционной системой Windows

NOTICE

Скачайте последнюю версию VAMPSET на www.vamp.fi.

VM321QG.EN001

5.1. Мультизональная система дуговой защиты VAMP 321

Рисунок 5.1-1 VAMP 321 Образец применения. Значение трансформатора 1200/5 А

Зона АКабельный отсек вводаЗона ВОтсек выключателяЗона 1Отсек шиныЗона1.1/Комбинированный выключатель и отсекЗона 1.2концевой кабельной муфты

VAMP

Функциональное описание

В данном примере, датчик дуги для зоны 1.1 подключен к входу № 1 блока ввода-вывода. Если датчик дуги детектирует вспышку, VAMP 321посылает сигнал к vстройствv ввода-вывода 1.1 И зона изолируется выключателем фидера.

Датчик дуговой для зоны 1.2 подключен к входу № 2 или 3 блока ввода / вывода. Если датчик дуги детектирует вспышку, VAMP 321 посылает сигнал к устройству вводавывода, зона 1.2 так же изолируется выключателем фидера.

Дуговые датчики для зоны 1 подсоединены к каналам датчика 4 ... 10 блока ввода / вывода. Если датчик дуги детектирует вспышку в зоне 1, сигнал передается на VAMP 321, который, в свою очередь, отключает вводной выключатель.

NOTICE Для блоков 12L и 12LD, три канала датчиков могут самостоятельно отключать их собственные зоны, остальные семь каналов датчиков могут быть распределены в других зонах.

Датчик S2 подключенный к VAMP 321 в зоне В перекрывает зону А. Если выключатель не в состоянии изолировать поврежденный участок в зоне В, датчик (S2) инициирует отключение вышестоящего выключателя. Вводной выключатель имеет автоматическую функцию резервирования отказа выключателя. Если не выполнено отключение зоны 1 (T1), включается функция УРОВ.

На рисунке Зона А иллюстрирует входной фидер типичной ПС среднего напряжения, где трансформаторы тока расположены после концевой разделки кабеля. В этом случае возможное возникновение дуги в концевой заделке кабеля не активирует элемент тока в VAMP 321. Тем не менее, дуговая защита может быть реализована с помошью «Только Если луговое принципа свет». замыкание разделке кабеля. происходит В концевой зона Α отключается выключателем. Датчик S1 в зоне А частично перекрывает зону вводного выключателя.

Устройство резервирования отказов выключателей (УРОВ) обеспечивает защиту в случае сбоя в зоне 1, или в датчике S2 в зоне В. Отключение выхода (Т2/УРОВ) может функционировать как выход отключения, и как временная задержка для УРОВ. Чтобы инициировать УРОВ, необходимо создать дополнительную фазу временной задержки.

Компоненты системы

- VAMP 321
- VAM 12LD устройство ввода-вывода
- Семь датчиков дуги VA1DA
- VX001 модульный кабель для подключения устройства ввода-вывода к ИЭУ

5.1.1. Подсоединение устройств

WARNING

NG Перед подключением устройства, отключите напряжение источника питания.

• Подключите датчики дуги к блоку зажимов блока ввода / вывода

• Подключите блок ввода / вывода к ИЭУ с модульным кабелем VX001.

• Подключите датчики дуги к блоку зажимов ИЭУ.

5.1.2. Конфигурирование VAM 12LD

Перед изменением позиции программируемого переключателя, отключите напряжение питания от устройства.

Каждый блок ввода / вывода подключенный к коммуникационной шине имеет уникальный адрес.

Определите адрес, установив программируемый переключатели устройства ввода / вывода.

В данном примере, блок ввода / вывода работает для зоны 1, и поэтому адрес модуля $\,^{-}$ 0.

SW1 Установки микропереключателя для данного)
примера	

Перекл	Назначение	Настро	Описание
1	L> ext/int(внеш няя\внутр)	ON	ON = Фаза дуги активируется при наличии информации о свете, предоставляемой собственными датчиками блока. OFF = Фаза дуги активируется при наличии информации о свете, полученной от других блоков в той же зоне защиты.
2	Удержание	ON	Определяет операцию отключения реле после вспышки дуги. ОN = Реле отключения работает пока информация о неисправности не появилась на панели управления ИУЭ OFF = Операция отключения реле следует за неисправностью вспышки дуги.
3	L/L+I	OFF	Определяет критерии отключения дуги ON = Реле отключения активируется информацией о свете. OFF = Реле отключения активируется при наличии информации о свете и превышении уставки по току
4	Зона	OFF	Весовой коэффициент адреса 16
5	Зона	OFF	Весовой коэффициент адреса 8
6	Адрес	OFF	Весовой коэффициент адреса 4
7	Адрес	OFF	Весовой коэффициент адреса 2
8	Адрес	OFF	Весовой коэффициент адреса 1

5.1.3. Подключение напряжения питания

Не подключайте напряжение питания, до того как завершено подключение устройства и блока ввода-вывода. Если необходимо поменять параметры, отключите напряжение питания перед настройкой устройств.

- Убедитесь, что связи устройства и конфигурации блока ввода-вывода в порядке.
- Подключите вспомогательное напряжение питания к блоку зажимов ИЭУ

5.2. Конфигурирование системы

Для конфигурирования системы дуговой защиты, вам необходимы:

- Соответствующие требованиям права пользования ПК •
- Руководство по настройке и установке VAMPSET • загруженное на ПК
- USB кабель (VX052) для соединения ИУЭ с ПК

Настройка связи 5.2.1.

NOTICE

Если к шине подключены несколько ИЭУ, только для одного задайте основной режим MASTER, а для остальных подчиненный режим SLAVE.

Подключите USB кабель между последовательным • портом ПК и локальным портом ИЭУ.

Определение настроек последовательного порта ПК

NOTICE

Убедитесь, что настройки коммуникационного порта на ПК соответствуют настройкам ИЭУ.

1. Откройте Диспетчер устройств на компьютере и проверьте номер USB-порта (СОМ) для ИЭУ

2. Откройте Руководство по настройке и установке VAMPSETна ПК.

3. В меню Настройки VAMPSET, выберите Настройки связи

4. Выберите правильный порт в окне Порт и нажмите Применить.

Определение настроек связи для VAMPSET

1. На передней панели, перейдите в меню CONF / DEVICE SETUP меню и проверьте скорость передачи порта.

2. В меню VAMPSET Настройки, выберите Настройки Связи.

 В локальной сети выберите соответствующую скорость (бит\с) из выпадающего списка и нажмите кнопку Применить..
 В меню Настройки VAMPSET, выберите Настройки программы.

NOTICE

Если необходимо произвести более быструю операцию, измените скорость до 187500 бит на VAMPSET и на ИУЭ.

Подключение ИЭУ

1. В меню Связь VAMPSET выберите Подключить устройство.

2. Введите пароль и нажмите Применить. VAMPSET подключается к ИЭУ

Пароль для конфигуратора по умолчанию 2.

Изменения значения напряжения и трансформаторов тока

Меню РАСЧЕТ содержит первичные и вторичные значения коэффициентов трансформации КТ. Однако, меню Дуговой защиты вычисляет значение постоянного по величине потока только после того, как задан параметр значения.

Пример:

1. В списке групп VAMPSET, выберите ИЗМЕНЕНИЯ ЗНАЧЕНИЯ.

2. Нажмите первичное значение КТ, установите его на 1200А и нажмите Enter.

3. Нажмите вторичное значение КТ, установите его на 5 A и нажмите Enter.

CT primary	1200	Α
CT secondary	5	Α
Nominal input	5	А
lo1 CT primary	1	Α
lo1 CT secondary	0.1	Α
Nominal Io1 input	1.0	Α
VTo secondary	100.000	V
Voltage meas. mode	Uo	
Frequency adaptation mode	e Auto	

Рисунок 5.2.2-1 Установка значений масштабирования трансформатора тока для примера

- 4. В списке групп VAMPSET выберите ДУГОВАЯ ЗАЩИТА
- 5. Определите значение I pick-up для ИУЭ. Значения постоянного по величине тока рассчитано.

S	ettings			
I pick-up setting	1200 A			
I pick-up setting	1.2 ×in	1		
lo pick-up setting	1 A			
lo pick-up setting	1.20 xin	1		
Communication mode Master				
Install arc sensors & I/O units -				
Installation state	Ready			
Release latches	Release latches -			
Clear I/O units' registers	-			

Figure 5.2.2-2 Определение значение Іріск-ир для примера

В этом примере ток I0 не подключен к ИУЭ, и изменение значения может быть проигнорировано. Кроме того, трансформаторы напряжения не доступны в данном примере и изменения значений напряжения может быть проигнорировано.

5.2.3. Инициализация датчиков дуги и блоков ввода-вывода в системе

1. В списке групп VAMPSET выберите ДУГОВАЯ ЗАЩИТА

- 2. В разделе Параметры нажмите кнопку Установить датчики дуги и модулей ввода / вывода выпадающего списка и нажмите кнопку Установить.
- 3. Подождите пока состояние установка будет в режиме Ready (готовность). Связь между компонентами системы создана.

Установленные датчики и блоки можно посмотреть в нижней части списка ДУГОВОЙ ЗАЩИТЫ

5.3. Конфигурирование дуговой защиты

5.3.1. Конфигурирование матрицы тока

В данном примере применения рассмотрен вариант конфигурирования дугового замыкания вводной ячейки и превышения уставки тока связанные в матрице. Критерий тока для дуговой фазы 2 не определен, так как Датчики фазы 2 работают по принципу «только Свет». 1. В списке групп VAMPSET, выберите МАТРИЦА ДУГИ – ТОК

2. В матрице, выберите точку подключения к дуговой фазе1 и I> Int(внутр).

3. В меню Связь, выберите запись - Изменение настроек устройства

5.3.2.

Конфигурирование световой матрицы

Настройте так, чтобы сигналы световых датчиков поступали в систему защиты.

1. В списке групп VAMPSET, выберите МАТРИЦА ДУГИ – СВЕТ

2. В матрице, выберите точку подключения к датчику дуги 1 и фазе дуги 2

3. Выберите точку подключения датчика дуги 2 и фазу дуги 2

4. Выберите точку подключения зоны 1 и фазу дуги 1.

5. В меню Связь, выберите запись - Изменение настроек для устройства

NOTICE

Фаза дуги 2 работает по принципу Только свет, поскольку нет токов, связанных с фазой 2 в матрице тока.

5.3.3.

Конфигурирование матрицы выпуска

Определите реле отключения, на которое влияют ток и световые сигналы.

1. В списке групп VAMPSET, выберите МАТРИЦА ДУГИ

2. В матрице, выберите точку подключения к фазе дуги1 и T1.

3. Выберите точку подключения Удержание и Т1 и Т2.

4. Выберите точку подключения фазы дуги 2 и Т2.

5. В меню Связь, выберите запись Изменены настройки для устройства.

NOTICE

Рекомендуется использовать выход с удержанием для реле отключения.

ARC MATRIX - OUTPUT		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Latched Arc stage 1 Arc stage 2 Arc stage 3 Arc stage 5 Arc stage 5		
Arc stage 6 Arc stage 7 Arc stage 8		

Рисунок 5.3.3-1 Конфигурирование матрицы выпуска для примера.

VM321QG_EN001

5.3.4. Конфигурирование журнала событий

Определите, какие события дуговых замыканий записаны в журнал учета событий в данном примере.

1. В списке групп VAMPSET, выберите АКТИВИРОВАТЬ ЖУРНАЛ СОБЫТИЙ ДУГИ.

2. В матрице, активировать одновременно событие 'Act On' и'Act Off" для датчика дуги 1, фазу дуги1, фазы дуги 2 и зоны 1.

3. В меню Связь, выберите запись - Изменение настроек для устройства.

Рисунок 5.3.4-1 Конфигурирование событий дуги для примера

5.3.5.

Конфигурирование названий светодиодов

1. В списке групп VAMPSET, выберите НАЗВАНИЯ СВЕТОДИОДОВ.

2. Чтобы изменить наименование светодиода, нажмите на текст-описание светодиода и напечатайте новое название. Нажмите Enter.

LED	Description	LED	Description
LED A (green)	LED A (green)	LED B (green)	LED B (green)
LED A (red)	LED A (red)	LED B (red)	LED B (red)
LED C (green)	LED C (green)	LED D (green)	LED D (green)
LED C (red)	LED C (red)	LED D (red)	LED D (red)
LED E (green)	LED E (green)	LED F (green)	LED F (green)
LED E (red)	LED E (red)	LED F (red)	LED F (red)
LED G (green)	LED G (green)	LED H (green)	LED H (green)
LED G (red)	LED G (red)	LED H (red)	LED H (red)
LED I (green)	LED I (green)	LED J (green)	LED J (green)
LED I (red)	LED I (red)	LED J (red)	LED J (red)
LED K (green)	LED K (green)	LED L (green)	LED L (green)
LED K (red)	LED K (red)	LED L (red)	LED L (red)
LED M (green)	LED M (green)	LED N (green)	LED N (green)
LED M (red)	LED M (red)	LED N (red)	LED N (red)

Рисунок 5.3.5-1 Меню НАЗВАНИЙ СВЕТОДИОДОВ в VAMPSET для конфигурации светодиодов

5.3.6. Конфигурирование регистратора нарушения нормального режима

Регистратор нарушений может использоваться для записи всех измеряемых сигналов, то есть, тока, напряжения и информации о состоянии дискретных входов (DI) и цифровых выходов (DO).

Для этого - выберите каналы и частоту отсчетов для регистратора нарушений.

- 1. В окне VAMPSET, откройте меню РЕГИСТРАТОРА НАРУШЕНИЙ.
- 2. Нажмите кнопку «Добавить канал записи» в раскрывающемся списке и выберите канал IL1.
- 3. Аналогично выберите каналы IL2, IL3, DO и дугу.
- 4. Нажмите Частота отсчета в раскрывающемся списке и выберите скорость 1/20мс.

Чтобы загружать, просматривать и анализировать записи, откройте VAMPSET и нажмите кнопку «Просмотреть меню Регистратора Нарушений».

NOTICE

Для получения дополнительной информации об изменении настроек Регистратора нарушений и оценки записей см. руководство пользователя VAMPSET.

VM321QG.EN001

Dist. rec. version	1.2	
RECORDER CHANNELS		
Ch	IL1,IL2,IL3	,DO,Arc
Add recorder channel	-	
Remove all channels	-	
r		_
Recording mode	Overflow	
Recording mode Sample rate	Overflow 1/20ms	
Recording mode Sample rate Recording length	Overflow 1/20ms 8.00	s
Recording mode Sample rate Recording length Pre trig time	Overflow 1/20ms 8.00 50	s %
Recording mode Sample rate Recording length Pre trig time Event enabling	Overflow 1/20ms 8.00 50	s %

	RECORDER LOG				
	Status	Trig source	Date	hh:mm:ss.ms	
[1]	Run	-	-	-	
[2]	-	-	-	-	
[3]	-	-	-	-	
[4]	-	-	-	-	
[5]	-	-	-	-	
[6]	-	-	-	-	
[7]	-	-	-	-	
[8]	-	-	-	-	
[9]	-	-	-	-	
[10]	-	-	-	-	
[11]	-	-	-	-	
[12]	-	-	-	-	
					_
Manu	al triggering			-	
Clear	Clear oldest buffer -				
Clear	Clear all buffers -				
Status	Status Run				
Recor	ding comple	etion		50 %	
Readable records 0/11					

Рисунок 5.3.6-1 Конфигурирование регистратора нарушений нормального режима для примера

5.3.7.

Запись параметров ИЭУ

• В меню Связь VAMPSET, выберите Запись всех параметров устройства для загрузки конфигурации для ИЭУ.

NOTICE

Чтобы сохранить информацию о конфигурации ИЭУ для дальнейшего использования, сохраните файл документа VAMPSET на ПК

5.3.8. Сохранение файла документа VAMPSET

Сохраните информацию о конфигурации ИЭУ на ПК. Файл документа может помочь, например, если вам нужна помощь в устранении неполадок..

- 1. Подключите ИЭУ к ПК USB кабелем.
- 2. Откройте VAMPSET на ПК
- 3. В меню Связь выберите Подключить устройство.
- 4. Введите пароль конфигуратора.

Открывается конфигурация ИЭУ.

- 5. В меню Файл выберите команду Сохранить как.
- 6. Введите описательное имя файла, выберите расположение файла и нажмите кнопку Сохранить.

NOTICE

По умолчанию файл конфигурации сохраняется в папку VAMPSET.

VM321QG.EN001

5.4. Проверка конфигурации

5.4.1.

Испытания датчиков дуги

- Используйте осветительный прибор или другой мощный источник света, чтобы обеспечить достаточно долгий световой импульс для датчиков дуги вспышки..
- Активируйте каждый датчик дуги по отдельности. Убедитесь, что от светодиодов ИЭУ и дисплея свет проходит через весь канал связи.
- Для обеспечения отключения выключателя ИЭУ, активируйте некоторые каналы датчиков блока ввода / вывода со световым сигналом, а также ИЭУ с сигналом перегрузки по току.
- Зафиксируйте все результаты на листе протокола испытаний

NOTICE

Для дополнительных сведений об испытаниях, см. Руководство по испытаниям ИЭУ.

5.5. Коды неисправностей

Для получения информации о кодах неисправностей, см. документ Коды неисправностей

6.1.

Технические характеристики VAMP 321

Источник питания	
Us	80265 B
	Постоянного \переменного тока
Потребляемая мощность	20 Вт (внутр)
	50 Вт (внешняя 24 В Постоянный ток)
Цепи измерения	
Номинальная сила тока	1 A / 5 A
Номинальная частота	4565 Гц
Потребляемая мощность	0.3 BA
Термическая стойкость	100 x (1 c)
Операционные настройки	
Настройка срабатывания IL	0.508.00 x In
Настройки срабатывания Іо	0.105.00 x In
Время работы	<7 мс
Отключение контактов	
Номер контакта	В соответствии с кодом заказа
Номинальное напряжение	250 В Постоянного\переменного
п ,	тока
Длительно допустимый ток	5 A
Ток в течении 0.5 с	30 A
Ток в течении 3 с	15 A
Материал контактов	AgNi
Сигнал/ Промежуточная частота	
Контакты сигнализации	2 шт(перекидной)
Контакты сигнала	1 шт NO
Номинальное напряжение	250 В Постоянного\переменного
	тока
Длительно допустимый ток	5 A
Материал контакта	AgNi
BIO Входы и выходы	
Номинальное напряжение	+36 V DC
Номинальный ток (ВО)	20 мА
Номинальный ток (BI)	5 мА
L> BI линии (IN)	3 шт
L> ВО линии(OUT)	Зшт

264 VM321QG.EN001

VAMP

Подчиненный порт (RJ-45)	
Многоточечное соединение	Макс 16 подчиненных и 3
	основных
Поставка к подчиненным	Изолированный 24 В
	(постоянный ток)
Связь	RS-485
(основной-подчиненный)	Инфо.самоконтроль
Дуга \оптический сигнал	4 зона ДУГА и
(основной-подчиненный)	1 зона Оптической линии
Входы датчиков дуги	
Прямые входы	В соответствии с кодом заказа

6.2.

Блоки ввода-вывода VAM

Отключение контактов			
Номинальное напряжение 250		0 В Пост\перем тока	
Длительно допустимый ток 5 А		A	
Ток в течении 0.5 с	30) A	
Ток в течении 3 с	15	бA	
Время работы	<7	7 мс	
Цифровое устройство ввода			
Номинальное напряжение	24	В Постоянно	го тока
Номинальная сила тока	51	мА	
Цифровое устройство вывода			
Номинальное напряжение		24 В Постояни	ного тока
Номинальная сила тока		20 мА (макс)	
VAM 10L / 10LD / 12L / 12LD			
		VAM	VAM 12L
		10L VAM	VAM 12LD
Кол-во отключения контактов		10LD	
		1	3
Кол-во цифровых устройств ввода		1	-
Кол-во цифровых устройств вывода		1	-
Кол-во каналов датчиков дуги		10	
Потребляемая мощность,		45 мА	
In (в режиме ожидания)			
Потребляемая мощность во время		20 мА	
активации канала I sensAct			
Общая потребляемая мощность		45 мА +(n x I sens Act)	
		(n = кол-во а	активных
		датчиков)	

IVAMP

VAM 4C / VAM 4CD		
Кол-во отключения контактов	1	
Кол-во цифровых устройств	1	
Кол-во цифровых устройств	1	
Цепи измерения		
Номинальная сила тока	1 A / 5 A	
Номинальная частота	4565 Гц	
Потребляемая мощность	≤0.3 BA	
Термическая стойкость	60 x (1c)	
Операционные настройки		
Фазный ток IL>	0.56.0 x In	
Замыкание на землю Іо>	0.055.0 x In	
Погрешность	±5%	
Коэффициент возврата реле	0.95	

Увеличитель диапазона отключения контактов VAMP 4R

Две группы	
Источник питания	24 В пост.тока
Сигнал управления	18265 В Пост\перем.тока
Контакты отключения	4 IIIT NO, 4 IIIT NC
Номинальное напряжение	250В пост\перем.тока
Длительно допустимый ток	5 A
Ток в течении 0.5 с	30 A
Ток в течении 3 с	15 A
Материал контактов	AgNi

VM321QG.EN001

7.

Испытания и условия окружающей среды

IEC 60255

- Пункт 7 (Проверка точности)
- Пункты 4.2 и 4.3 прописаны в МЭК 60255-27

МЭК 60255-26

- МЭК 60255-11 (Колебания напряжения и помехи)
- МЭК 60255-22-1 (Взрыв 1 МГц)
- МЭК 60255-22-2 класс 4 (Электростатический заряд)
- МЭК 60255-22-3 (Защита от радиационных возбуждений)
- МЭК 60255-22-4 класс А (EFT)
- МЭК 60255-22-5 класс 4 (Волна)
- МЭК 60255-22-6 (Стойкость к кондуктивным помехам)
- МЭК 60255-22-7 (Стойкость к колебаниям промышленных частот)
- МЭК 60255-25 (Излучение и произведенный выброс) МЭК 60255-27
 - МЭК 60068-2-2 (Испытание сухим жаром)
 - МЭК 60068-2-1 (Испытание холодом)
 - МЭК 60068-2-78 (Влажное тепло)
 - МЭК 60068-2-30 (Влажное тепло)
 - МЭК 60255-21-1 (Вибрации)
 - МЭК 60255-21-2 (Удар и столкновение)
 - МЭК 60255-5 (Испытание напряжения изоляции)
 - МЭК 60259 (Рейтинг IP)
 - Chapter 10.5.2.2 Очистка и расстояние утечки
 - Глава 10.5.4.2 Воспламеняемость изоляционных материалов, компонентов и противопожарная изоляция
 - Глава 10.5.4.3 Кратковременный тепловой тест (Напряжение и трансформаторы тока
 - Глава 10.5.4.4 Выходное реле
 - Глава 10.5.4.5 Условие единичного нарушения

VAMP

EN 50263 (Директива МЭК), EN 61000-6-4, EN 61000-6-2

- EN 55011 (Стойкость к уровню выброса и радиации для приборов ISM)
- EN 60255-22-2 (ESD)
- EN 61000-4-2 (ESD)
- EN 61000-4-3 (Излучаемые помехи)
- EN 61000-4-4 (EFT)
- EN 61000-4-5 (Волна)
- ЕN 61000-4-6 (Механические помехи)
- ЕN 61000-4-8 (Частота электромагнитного поля)
- МЭК 60255-11 (Небольшие волны пост. тока)
- МЭК 60255-22-1 (Взрыв1 МГц)
- МЭК 60255-22-3 (Стойкость к излучениям)
- МЭК 60255-22-4 (EFT)
- МЭК 60255-22-6 (Механические помехи)
- МЭК 60255-5 (Директива LDV)

Условия окружающей

среды

Диапазон рабочих температур	-25+60°C
Относительная влажность	< 95%,
воздуха	Без образования конденсата
Степень защиты (МЭК 60529)	IP54
Bec	4.0 кг
Размеры (ш х в х д)	270 х 176 х 230 мм

8.

Информация для заказа

8.1. VAMP 321

8.2. Дополнительные компоненты системы

Код заказа	Пояснение	Прим.
VAM 3L	Волоконный блок	3 оптические петли, 1 выход отключения
VAM 3LX	Волоконный блок	3 оптические петли, 1 выход отключения, настройка чувствительности
VAM 4C	Токовый блок	3 токовые входы, 1 выход отключения
VAM 4CD	Токовый блок	3 токовых входа, 1 выход отключения, скрытый монтаж
VAM 10L	Световой блок точеных датчиков	10 входов для датчиков, 1 выход отключения
VAM 10LD	Световой блок точеных датчиков. Монтаж на дверь	10 входов для датчиков, 1 выход отключения, скрытый монтаж
VAM 12L	Световой блок точеных датчиков	10 входов для датчиков, 3 выхода отключения
VAM 12LD	Световой блок точеных датчиков. Монтаж на дверь	10 входов для датчиков, 3 выхода отключенияs, скрытый монтаж
VAMP 4R	Реле размножения контактов отключения (исп. vx002кабель)	4 x HO, 4 x HЗ, 2 группы
VA 1 DA-6	Датчик дуги	Длина кабеля 6 м
VA 1 DA-20	Датчик дуги	Длина кабеля 20 м
VA 1 DP-5	Переносной датчик дуги	Длина кабеля 5 м
VA 1 EH-6	Датчик дуги (Трубчатый тип)	Длина кабеля 6 м
VA 1 EH-20	Датчик дуги (Трубчатый тип)	Длина кабеля 20 м
ARC-SLm-x	Волоконный датчик	х = длина волоконного кабеля [м]
VX001-xx	Модульный кабель VAMP 321 - VAM и VAM - VAM	хх = Длина кабеля [м]
VYX001	Surface Mounting Plate for Sensors	Z-типа
VYX002	Монтажная плата для датчиков дуги	L-типа

- Длинна волокна 1, 5, 10, 15, 20, 25, 30, 35, 40, 50 и 70 м
- Длина кабелей 1, 3, 5, 7, 10, 15, 20, 25 и 30 м

Редакции

Версия	Изменения
оборудовани	
10.88	Первая версия.

10. Глоссарий

Термин	Описание
Файл документа	Содержит информацию о настройках
	ИЭУ, журнал событий и
	неисправностей.
ППВМ	Программируемая пользователем
	вентильная матрица
ПО	Операторская панель
ИЭУ	Интеллектуальное электронное
ЖКД	Жидкокристаллический дисплей
СИД	Светоизлучающий диод
Передняя панель	Передняя панель с дисплеем и
	кнопками
ПК	Персональный компьютер
VAMPSET	Устройство для настройки защиты VAMP

VM321QG.EN001

