GE Grid Solutions

Multilin 750/760

Feeder protection system

The 750/760 Feeder Protection System is a digital relay intended for the management and primary protection and control of distribution feeders. This easy to use relay provides comprehensive protection functions for feeders and back up protection for bus, transformers and transmission lines in a draw out construction and at a reduced product life cycle cost.

Key Benefits

- Easy to use Feeder Protection System supported by industry leading suite of software tools
- Accurate built-in metering functions Eliminates auxiliary metering devices and reduces cost
- Improve uptime of auxiliary equipment I/O monitoring
- Reduce troubleshooting time and maintenance costs IRIG-B time synchronization, event reports, waveform capture, data logger
- Minimize replacement time Draw-out construction
- Simplify testing Built in simulation features
- Cost effective access to information. Supports industry protocols such as DNP & Modbus. Includes an optional 10MB Ethernet port for system integration
- Complete asset monitoring Analog I/O, Full metering including demand & energy
- Leading edge technology Flash memory for product field upgrade
- Extended life Optional conformal coating for chemically corrosive and humid environments
- Globally accepted ensuring adherence to international codes and standards

Applications

- Primary protection and control for distribution feeders on solidly grounded, high impedance grounded or resonant (Peterson Coil) grounded systems
- Bus blocking/Interlocking schemes
- High-speed fault detection for arc flash mitigation
- Throw over schemes (bus transfer scheme applications)
- Load shedding schemes based on voltage and frequency elements
- Back-up protection for transmission lines, feeders and transformers
- Distributed Generation (DG) interconnect protection

Protection and Control

- Directional time, instantaneous phase & ground overcurrent protection
- Directional sensitive ground and Restricted Earth Fault protection
- Reverse power protection
- Synchro Check V, f, Hz, & dead-source
- Automatic bus transfer or manual control
- 4 shot recloser (760 only)

Communications

- Networking interfaces 10Mbps Ethernet, RS232, RS485 and RS422 ports
- Ethernet port, 10Mbps
- Multiple protocols ModBus™ RTU, TCP/IP, DNP 3.0 Level 2

Monitoring & Metering

- Metering current, voltage, sequence components, power, energy, voltage
- Breaker operation & trip failure
- Total breaker arcing current
- Ambient temperature /analog transducer input
- Oscillography & Data Logger 10 records up to 32 power cycles
- Simulation mode and playback capability

EnerVista Software

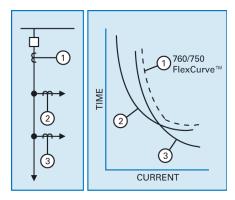
- State of the art software for configuration and commissioning Multilin products
- Document and software archiving toolset to ensure reference material and device utilities are up-to-date
- EnerVista™ Integrator providing easy integration of data in the 750/760 into new or existing monitoring and control systems

Protection and Control

The 750/760 Feeder Protection System is a digital relay intended for the management and primary protection and control of distribution feeders. This easy to use relay provides comprehensive protection functions for feeders and back up protection for bus, transformers and transmission lines at a reduced product life cycle cost.

Time & Instantaneous Overcurrent

The 750/760 has two phase TOC elements with level detectors for each phase. The 750/760 also has two overcurrent elements most commonly used for primary and back up protection. Each TOC element has the following programmable characteristics:


- Pickup current level for trip, alarm, or control
- Choice of 15 curve shapes (including FlexCurves) and curve multipliers
- Instantaneous or linear reset time characteristic
- Voltage restraint

Functional Block Diagram

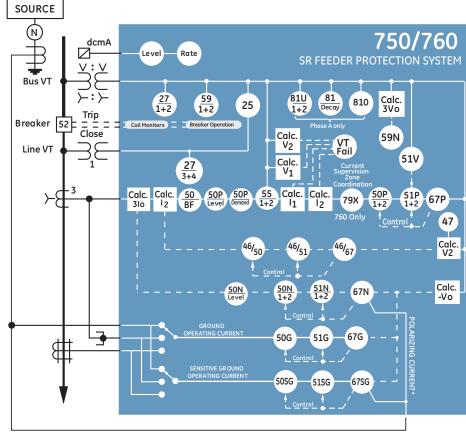
ANSI	Extremely Inverse
	Very Inverse
	Normally Inverse
	Moderately Inverse
	Definite Time
IEC	Curve A (BS142)
	Curve B (BS142)
	Curve C (BS142)
	Short Inverse
IAC	Extreme Inverse
	Very Inverse
	Inverse
	Short Inverse
Custom	FlexCurve™ A
	FlexCurve™ B

Standard and Flex Curves

The 750/760 has two phase IOC elements with level detectors for each phase. Each IOC element has a programmable pickup current, a time delay during which current must exceed the pickup for operation, and the minimum number of phases required for operation.

Typical application of FlexCurves™

Ground overcurrent protection


Solidly grounded and low impedance grounded distribution systems requiring fast clearing of ground faults to limit equipment damage. The following functions are incorporated in the 750/760 to provide ground fault protection

- Neutral IOC and TOC
- Ground IOC and TOC

750/760 allows directional elements to be used to supervise the ground overcurrent protection

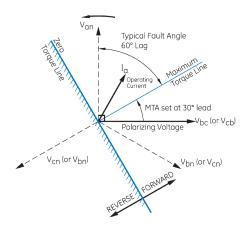
ANSI Device Numbers & Functions

Device Number	Function
25	Synchronism Check
27	Bus/Line Undervoltage
32	Reverse Power
46/50	Negative Sequence Instantaneous Overcurrent
46/51	Negative Sequence Timed Overcurrent
46/67	Negative Sequence Directional Overcurrent
50	Breaker Failure
50N	Neutral Instantaneous Overcurrent
50P	Phase Instantaneous Overcurrent
50G	Ground Instantaneous Overcurrent
50SG	Sensitive Ground Instantaneous Overcurrent
51N	Neutral Time Overcurrent
51P	Phase Time Overcurrent
51G	Ground Time Overcurrent
51SG	Sensitive Ground Time Overcurrent
55	Power Factor
59	Overvoltage
59N	Neutral Overvoltage
59P	Phase Overvoltage
67N	Neutral Directional Overcurrent
67P	Phase Directional Overcurrent
67G	Ground Directional Overcurrent
67SG	Sensitive Ground Directional Overcurrent
81U/O	Under/Over Frequency
81	Frequency Decay

* POLARIZING CURRENT AND GND CURRENT ARE MUTUALLY EXCLUSIVE SINCE BOTH USE THE SAME RELAY CT INPUT TERMINALS elements. This means the 750/760 can be used to provide sensitive tripping for faults in one direction. Typical applications for directional overcurrent include:

- Isolation of the faulted feeder in ring bus or parallel feeder arrangements.
- Prevention of back-feeding utility source fault from industrial plant generators
- Sensitive hi-speed ground protection of transformers

Sensitive ground and Restricted Earth Fault (REF) protection

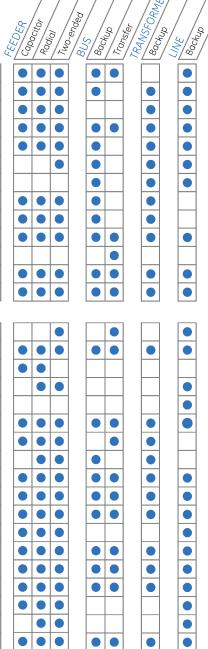

Sensitive ground and RGF protection features provide sensitive detection of ground faults. Sensitive ground fault protection includes:

- Instantaneous (50N) & Tim (51N) 2 levels
- Directional supervision allows to discriminate between forward and reverse faults.
- Dual polarization (current & voltage) provides max security and reliability

750/760 employed to provide transformer back up protection (grounded wye windings and autotransformers) using the RGF feature.

Voltage Protection

Overvoltage/Undervoltage protection features can cause a trip or generate an alarm when the voltage exceeds a specified voltage setting for a specified time. Voltage protection includes a negative sequence voltage element to detect abnormal system unbalance conditions, and a neutral displacement voltage element using the calculated zero sequence voltage (3V0) to detect ground faults.


Phase directional (for phase A).

Protection/Control

Bus/Line Undervoltage
Negative Sequence Voltage
Phase/Neutral/Gnd/Neg Seq/Sens Gnd IOC
Phase/Neutral/Gnd/Neg Seq/Sens Gnd TOC
Bus Overvoltage/Neutral Displacement
Phase/Neutral/Neg Seq/Sens Gnd/Gnd Directional Control
Bus Underfrequency/Rate of Change
Undervoltage Automatic Restoration
Underfrequency Automatic Restoration
Breaker Failure with Current Superv.
Bus Transfer
Programmable Logic Inputs
Multiple Setpoint Groups

Monitoring/Control

Synchronism Check					
Phase/Neutral Current Level					
Power Factor					
Autoreclose (760 only)					
Overfrequency					
Breaker Open/Close					
Manual Close Feature Blocking					
Cold Load Pickup Feature Blocking					
Breaker Operation Failure					
Trip/Close Circuit Failure					
Total Breaker Arcing Current					
VT Failure					
Demand (A, MW, Mvar, MVA)					
Analog Input					
Event Recording					
Analog Output					
Fault Locator					
Trip Counter					

Frequency Protection

750/760 provides functionality to improve network (grid) stability using voltage or frequency based techniques. Also allows to provide back up protection and trip breakers directly when protecting generators and other frequency sensitive power equipment.

- 2 Under-frequency elements (81U)
- 2 Over-frequency elements (810)
- Frequency decay: 4 df/dt elements (59/81)
- 2 Undervoltage elements

Reverse power detection

750/760 relay allows to trip or alarm when power flows against the intended direction. In systems having in-plant generation parallel to the utility supply, detection of power flow toward the utility is necessary. For such applications, 750/760 eliminates requirement for separate device to detect power flow direction and reduces overall cost. This feature can also be used to detect motoring power into the generator.

Synchronism Check

Breaker closing can be supervised by ΔV ,

 Δf and ΔHz setpoints. Dead-source alternatives are provided.

Cold Load Pickup Control

This function allows automatic or manual blocking or raising of trip settings for a period after the breaker is closed. Built-in scheme available to perform main-tie-main transfer using a set of three relays, two on incoming and one on a normally open bus tie breaker. This scheme uses " open before close " sequence for safe operation.

Manual Close Control

After the breaker is closed manually, the relay can block any IOC element or raise the pickup value of any TOC element, each for a programmable time delay, after which normal operation is restored.

Bus Transfer Scheme

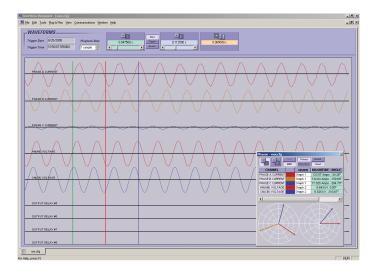
A set of three relays, two on incoming and one on a normally open bus tie breaker can perform transfer on loss-of-source.

Recloser (760 Only)

Autoreclosing can be initiated externally or from an overcurrent protection. Up to four reclose operations are possible, each with a programmable dead time. For each reclose shot, the relay can be programmed to block any IOC element, and to adjust the curve characteristics of any TOC element. The number of shots can be reduced by high currents.

Equipment Management

The following comprehensive features in the relay allows to manage the primary breaker:


- Trip counter to keep track of number of operations
- Per-phase breaker contact wear calculations for maintenance
- Breaker failure detection
- Trip coil monitoring

Monitoring and Metering

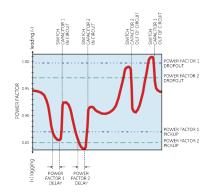
The 750/760 features advanced monitoring and metering functions which include:

Fault Locator

The relay uses captured data to calculate the type, distance to and the impedance of the fault. Records of the last 10 faults are stored.

The 750/760 saves up to 256 power frequency cycles of waveform data

Breaker Conditions


The relay calculates the per-phase wear on the breaker contacts to establish a threshold. When the breaker maintenance threshold is exceeded the relay can trigger an alarm. An alarm is also generated if the relay detects that the supervisory trickle current is not present. A failure to respond to an open or close signal in a programmed time can be used to generate an alarm.

VT Failure

The VT failure feature monitors each phase of input voltage, generating an alarm and sending the programmed output signals when a failure is detected.

Power Factor

Two independent elements monitor power factor, each with programmable pickup, dropout and time delay.

By monitoring the power factor the 750/760 can help minimize both costs and voltage excursions.

Analog Input

Any external quantity may be monitored via an auxiliary current input. Two analog input level monitoring elements and two rate-of-change elements are available. When the measured quantity exceeds the pickup level, the relay can trigger an alarm or signal an output.

Event Recording

The relay captures and stores the last 256 events, recording the time, date, cause, and system parameters. Events may be recorded selectively by category, so that only events of interest are recorded.

Oscillography

A block of configurable volatile memory can be used for recording samples of the AC input voltages and current, and the status of logic inputs and output relays. This memory can be configured between the ranges of two to 16 blocks with 16 to 256 power frequency cycles of data respectively. The amount of pre-event data recorded is set by the user. Trace memory recording can be triggered by operation of selected features or logic inputs.

Trip Counter

The number of breaker trip operations is recorded, and can be displayed for statistical purposes (useful for units without operation counters).

Metering

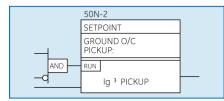
The 750/760 performs accurate measurement of the following:

- Actual V, A, Hz, W, Wh, var, varh, VA-PF
- Watthour cost
- Phasor presentation of V and I
- Symmetrical components of V and I
- Line (synchronous) voltage: RMS voltage, frequency, and differentials
- Percent of load-to-trip
- Analog input
- Running and maximum demand: A, MW, MVAR, MVA

Setpoints allow the user to simulate three common electrical utility demand measuring techniques.

Data Logging

A configurable memory block can record eight channels of any measured or calculated parameter. In continuous mode, this feature can be programmed to capture from 136 seconds of data per cycle to 48 weeks of data per hour.


Simulation

The relay provides a powerful simulation feature for testing the functionality of the relay in response to programmed conditions. System parameters are entered as setpoints. Pre-fault, fault, and post-fault conditions can be simulated to exercise relay features.

Logic Inputs

Setpoints block diagram.

Level detectors block diagram.

The relay has 14 contact and 20 serial inputs which can be programmed to perform any of 60 predefined functions, including remote tripping, resetting, feature blocking, and more.

Inputs and Outputs

The 750/760 features user-configurable inputs and outputs:

Outputs

The 750/760 has eight electromechanical relay outputs.

- Two are factory programmed for breaker control
- Five can be configured to operate as either failsafe or non-failsafe, and either latching, self-resetting, or pulsed; these relays can be programmed to be operated by any feature
- One of the relays is factory programmed as a fail safe internal failure alarm relay

The 750/760 has one high-speed SCR solid state output.

The 750/760 has eight analog output channels. Any of 31 measured parameters can be selected to drive these outputs.

IRIG-B Input

An IRIG-B input allows time synchronization using a satellite signal.

Communications

The 750/760 is equipped with three standard serial communications ports, one RS232 located in the front panel, and two RS485/RS422 in the rear of the relay. A rear Ethernet port is also available as an optional feature. The front panel port allows easy local computer access. The rear ports provide remote communications or connection to a DCS, SCADA, or PLC. The baud rate of all the serial ports is variable from 300 to 19,200 bps. The optional Ethernet port can be used to connect the 750/760 to 10 Mbps Ethernet networks. The 750/760 supports ModBus® RTU, DNP3.0 Level 2, and ModBus RTU TCP/IP protocols.

The three serial ports support ModBus RTU protocol, while any one of the two rear ports but not both can be configured to support DNP 3.0 Level 2. The optional Ethernet port supports ModBus RTU via TCP/IP protocol. The communication system of the 750/760 is designed to allow simultaneous communication via all ports.

Using Ethernet as the physical media to integrate the 750/760 to Local or Wide Area Networks, replaces a multidrop-wired network (e.g., serial Modbus®), and eliminates expensive leased or dial-up connections, reducing monthly operating costs.

Access Security

The 750/760 can be protected against unauthorized setpoint changes. A key switch may be installed on the rear terminals to allow setpoint changes from the front panel. An optional passcode restricts setpoint changes from both the front panel and ports.

EnerVista Software

The EnerVista[™] Suite is an industry-leading set of software programs that simplifies every aspect of using the 750/760 relay. The EnerVista[™] suite provides all the tools to monitor the status of your protected asset, maintain the relay, and integrate information measured by the 750 into DCS or SCADA monitoring systems. Convenient COMTRADE and Sequence of Events viewers are an integral part of the 750 Setup software included with every 750 relay, to carry out postmortem event analysis to ensure proper protection system operation.

EnerVista Launchpad

EnerVista[™] Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining Multilin products. The setup software within Launchpad allows configuring devices in real-time by using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time.

Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:

- Manuals
- Application Notes
- Guideform Specifications
- Brochures
- Wiring Diagrams
- FAQ's
- Service Bulletins

Viewpoint Monitoring

Viewpoint Monitoring is a simple-to-use and full-featured monitoring and data recording software package for small systems. Viewpoint Monitoring provides a complete HMI package with the following functionality:

- Plug-&-Play Device Monitoring
- System Single-Line Monitoring & Control
- Annunciator Alarm Screens

- Trending Reports
- Automatic Event Retrieval
- Automatic Waveform Retrieval

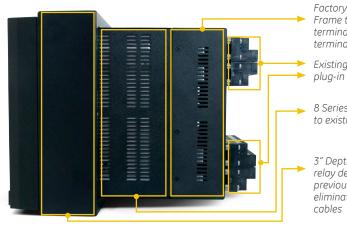
Retrofit Existing Multilin SR 750 Devices in Minutes

Traditionally, retrofitting or upgrading an existing relay has been a challenging and time consuming task often requiring re-engineering, panel modifications, and re-wiring. The Multilin 8 Series Retrofit Kit provides a quick, 3-step solution to upgrade previously installed Multilin SR 750/760 protection relays, reducing upgrade costs.

With the new 8 Series Retrofit Kit, users are able to install a new 850 Feeder Management System without modifying existing panel or switchgear cutouts, re-wiring, or need for drawing changes and re-engineering time and cost.

With this three-step process, operators are able to upgrade existing SR relays in as fast as 21 minutes, simplifying maintenance procedures and reducing system downtime.

EnerVista 8 Series Setup Software provides automated setting file conversion with graphical report to quickly and easily verify settings and identify any specific settings that may need attention.



Simply remove the 4 existing terminal blocks and then remove the SR chassis from the panel. No need to disconnect any of the field wiring.

Insert the new 8 Series Retrofit chassis into the switchgear and simply plug-in the old terminal blocks - there is need to make any cut-out modifications or push and pull cables.

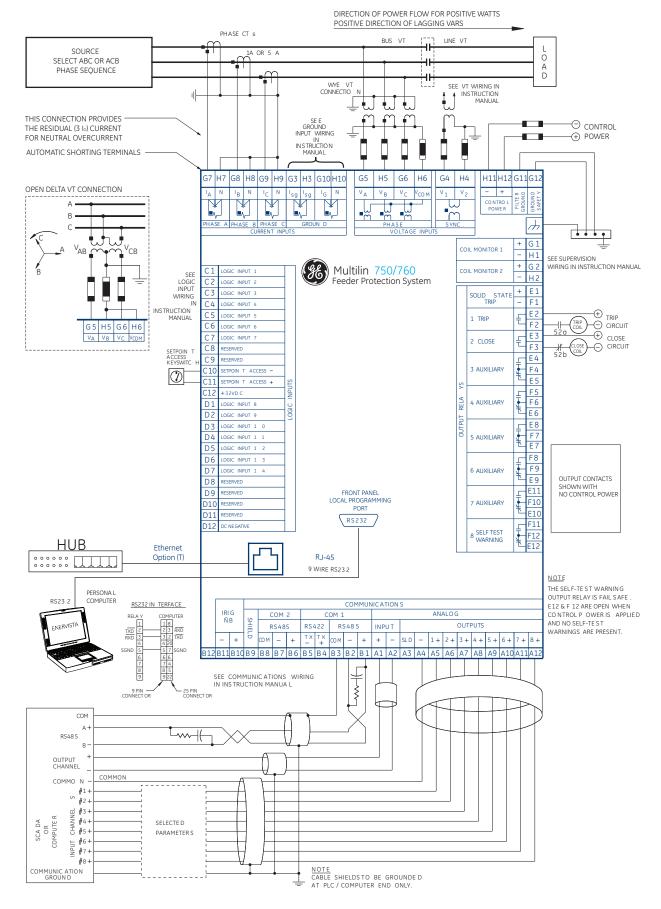
The 8 Series Retrofit Kit comes factory assembled and tested as a complete unit with the 8 Series protection device and includes replacement hardware (terminal blocks and screws) if the existing hardware is significantly aged or damaged.

Factory wired SR Terminal Block Frame to ensure mapping of SR terminal locations to the 8 Series terminal block

Existing SR Terminal Blocks easily plug-in

8 Series Protection Relay (matched to existing SR 750 or 760 device)

3" Depth Reduction Collar to ensure relay depth closely matches the previously installed SR device, eliminating the need to push or pull cables


Explore in Detail

visit us online to explore the SR to 8 Series retrofit kit in detail using our interactive app. www.GEGridSolutions.com/8SeriesRetrofitKit

Multilin 8 Series Retrofit

Typical Wiring

Technical Specifications

PROTECTION					
PHASE/NEUTRA OVERCURRENT	L/GROUND/NEGATIVE SEQUENCE TIME PROTECTION				
Pickup level:	0.05 to 20.00 in steps of 0.01 x CT				
Dropout level: Curve shape:	97 to 98% of Pickup ANSI extremely/very/moderately/				
	normally inverse Definite time (0.1 s base curve)				
	IEC curve A/B/C and short				
	FlexCurve™ A/B (programmable curves)				
Curvo multiplio	IAC extreme/very/inverse/short				
Reset type:	r: 0.00 to 100.00 in steps of 0.01 Instantaneous/linear				
	Per current input (I ₂ is 3 × input error)				
Thing accurac	at1.03 × PU: ±3% of trip time or				
	±40 ms (whichever is greater)				
	UND TIME OVERCURRENT PROTECTION				
Pickup level: Dropout level:	0.005 to 1.000 in steps of 0.001 x CT 97 to 98% of pickup				
Curve shape:	ANSI extremely/very/moderately/ normally inverse				
	Definite time (0.1 s base curve) IEC Curve A/B/C and short				
	IEC Curve A/B/C and short FlexCurve™ A/B (programmable				
	curves) IAC extreme/vary/				
	inverse/short r: 0.00 to 100.00 in steps of 0.01				
Reset type:	Instantaneous/linear				
Timing accurac	Per current input (I, is 3 × input error) y:at1.03 × PU: ±3% of trip time				
	or ±40 ms (whichever is greater)				
PHASE/NEUTRA INSTANTANEOU	L/GROUND/NEGATIVE SEQUENCE S OVERCURRENT PROTECTION				
Pickup level: Dropout level:	0.05 to 20.00 in steps of 0.01 × CT 97 to 98% of pickup				
Time delay:	0.00 to 600.00 in steps of 0.01s				
Level accuracy:	Per phase/neutral/ground current input (I, is 3 × phase input error)				
Timing accurac	y:				
At 0 ms ti	me delay (no intentional delay): Relay contacts = 50 ms max				
	solid state output = 45 ms max				
At non-ze	ro time delay: Delay accuracy = 0 to +20 ms				
Phases:	Any one/any two/all three (programmable)				
	phases have to operate for output				
	(not for I ₂)				
PHASE DIRECTIO					
Polarizing Volta	on: 90° (quadrature) ge: Vbc (phase A); Vca (phase B); Vab				
	(phase C)				
MTA: Angle Accuracy	(phase C) 0 to 359° in steps of 1				
Angle Accuracy Operation Dela	(phase C) 0 to 359° in steps of 1 :=2° y: 25 to 40 ms				
Angle Accuracy Operation Dela NEUTRAL DIREC	(phase C) 0 to 359° in steps of 1 ±2° ⊻ 25 to 40 ms TIONAL				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connect	(phase C) 0 to 359° in steps of 1 ± 2° ± 2° to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing voltage:				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo Ig	(phase C) 0 to 359° in steps of 1 :=2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing voltage: Polarizing current: MTa:				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo	(phase C) 0 to 359° in steps of 1 :=2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing voltage: Polarizing current: MTa:				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo Ig 0 to 359° in step to 40 ms	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TTONAL by voltage, current, or both voltage and age element polarizing, the source VTs read of the source VTs Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: MTA: MTA: MTA:				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo Ig 0 to 359° in step to 40 ms GROUND / SEN:	(phase C) 0 to 359° in steps of 1 :±2° y: 25 to 40 ms CTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs red element polarizing, the source VTs Polarizing outrage: NTA: MTA: MTA: MTA: MTA: Soft 1 Angle accuracy: ±2° Operation delay: 25				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt Imust be connec .Vo Ig 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TTONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: Polarizing voltage: TIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Yoo g to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec	(phase C) 0 to 359° in steps of 1 **2° y: 25 to 40 ms CTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing outrage: of 1 Angle accuracy: ±2° Operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye.				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt Imust be connec .Vo Ig 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms CTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing current: MTA: MTA: Notage: Current, or both voltage and age element polarizing, the source yTs ted in Wye. ge: Vo mt: Ig				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo Ig 0 to 359° in step to 40 ms GROUND / SEN: NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing curre MTA:	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs rolarizing current: MTA: so f 1 Angle accuracy: ±2° Operation delay: 25 STIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: -Vo 0 to 359° in steps of 1				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volti must be connec .Vo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing curre	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing current: MTA: MTA: Angle accuracy: ±2° Operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ger. Vo mt: Ig 0 to 359° in steps of 1 ±2°				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo g 0 to 359° in step to 40 ms GROUND / SEN: NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Blaccuracy Operation delay BUS UNDERVOL	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs rolarizing current: MTA: so f 1 Angle accuracy: ±2° Operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge:- Vo ot to 359° in steps of 1 ±2° y: 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta MTA: Angle accuracy Operation dela BUS UNDERVOL Minimum volta	(phase C) 0 to 359° in steps of 1 **2° y: 25 to 40 ms TTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing current: MTA: operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo lg 0 to 359° in step to 40 ms GROUND / SEN: NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing currec MTA: Angle accuracy Operation dela BUS UNDERVOL Minimum volta Pickup level:	(phase C) 0 to 359° in steps of 1 **2° y: 25 to 40 ms TTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing current: MTA: operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: youtage, current, or both voltage and age element polarizing, the source VTs				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo d to 359° in step to 40 ms GROUND / SEN: NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing currec MTA: Angle accuracy Operation delay BUS UNDERVOI Minimum volta; Pickup level: Dropout level: Dropout level:	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs real of the second seco				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing curre MTA: Angle accuracy Operation dela BUS UNDERVOL Minimum volta Pickup level: Dropout level:	[phase C] 0 to 359° in steps of 1 ±2° y: 25 to 40 ms CTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing outrage: Polarizing current: MTA: ted in Wye. Polarizing outrage: operation delay: 25 STIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: Vo mt: Ig 0 to 359° in steps of 1 :=2° y: 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge:> programmable threshold from 0:00 to 1.25 x VT in steps of 0.01 0:00 to 1.25 x VT in steps of 0.01 x VT 1:02 to 103% of pickup Definite time or inverse time 0:0 to 6:00:0.0 in steps of 0.1 s				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Jo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing curre MTA: Angle accuracy Operation delay BUS UNDERVOL Minimum volta; Pickup level: Dropout level: Curve: Time delay:	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing current: MTA: models of 1 Angle accuracy: ±2° Operation delay: 25 STIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge:- Vo of to 359° in steps of 1 ±2° y: 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge:> programmable threshold from 0.00 to 1.25 × VT in steps of 0.01 0.00 to 1.25 × VT in steps of 0.01 0.00 to 1.25 × VT in steps of 0.01 0.00 to 1.25 × VT in steps of 0.1 s Any one/any two/oll three (programmed)				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Jo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing curre MTA: Angle accuracy Operation delay BUS UNDERVOL Minimum volta; Pickup level: Dropout level: Curve: Time delay:	(phase C) 0 to 359° in steps of 1 **2° y: 25 to 40 ms TTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing current: MTA: operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge:- Vo Operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge:- Vo 0 to 359° in steps of 1 ::2° ::2's to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge:- Vol 103% of pickup Definite time or inverse time 0.0 to 1.2S in steps of 0.01 102 to 103% of pickup Definite time or inverse time 0.0 to 6000.0 in steps of 0.1 s Any one/any two/all three				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo 0 to 359° in step to 40 ms GROUND / SEN? NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing curre MTA: Angle accuracy Operation delay BUS UNDERVOL Minimum volta; Pickup level: Dropout level: Curve: Time delay: Phases:	[phase C] 0 to 359° in steps of 1 ±2° ±2° to 40 ms CTIONAL by voltage, current, or both voltage and age element polorizing, the source VTs Polarizing outrage: MTA				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing curre MTA: Angle accuracy Operation delay BUS UNDERVOL Minimum volta Pickup level: Dropout level: Curve: Time delay: Phases:	$ [phase C] \\ 0 to 359° in steps of 1 \\ \pm 2° \\ \pm 2° \\ \pm 2° \\ to 40 ms \\ \hline TIONAL \\ by voltage, current, or both voltage and age element polorizing, the source VTs ted in Wye. Polarizing outrant: MTA: Polarizing current: MTA: so f 1 Angle accuracy: ±2° Operation delay: 25 \\ \hline SITIVE GROUND DIRECTIONAL \\ by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. get Vo init: Ig 0 to 359° in steps of 1 \\ \pm 2° \\ tz 4° \\ tz $				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Jo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing curre MTA: Angle accuracy Operation delay: Pickup level: Curve: Time delay: Phases: Level accuracy: Timing accuracy OVERVOLTAGE Pickup level:	(phase C) 0 to 359° in steps of 1 **2° y: 25 to 40 ms CTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs by addinge, current, or both voltage and age element polarizing outrage: of 1 Angle accuracy: ±2° Operation delay: 25 STIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: Vo ntt: Ig 0 to 359° in steps of 1 *2° y: 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge: vorgommable threshold from 0:00 to 1.25 w TI in steps of 0.01 w VT 0:00 to 1.25 m steps of 0.1 s Any one/any two/all three (programmed) to operate for output (bus undervoltage only) Per voltage input y:±2100 ms V/2 0.00 to 1.25 in steps of 0.01 x VT				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo g 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Delarizing volta BUS UNDERVOL Minimum volta Pickup level: Dropout level: Curve: Timing accuracy OVERVOLTAGE Pickup level: Dropout level:	(phase C) 0 to 359° in steps of 1 ±2° y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polorizing, the source VTs ted in Wye. Polarizing current: MTA: main of 1 Angle accuracy: ±2° Operation delay: 25 SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polorizing, the source VTs ted in Wye. ge: Vo mt: Ig 0 to 359° in steps of 1 ±2° x 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge:> programmable threshold from 0.00 to 1.25 in steps of 0.01 0.00 to 1.25 in steps of 0.1 s Any one/any two/all three (programmed) to operate for output (bus undervoltage only) Per voltage input y=100 ms VZ 0.00 to 1.25 in steps of 0.01 × VT 97 to 98% of pickup				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Minimum volta Pickup level: Dropout level: Curve: Timing accuracy Phases: Level accuracy OVERVOLTAGE Pickup level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Dropout level: Time delay:	[phase C] 0 to 359° in steps of 1 $\pm 2^{\circ}$ y: 25 to 40 ms TIONAL by voltage, current, or both voltage and age element polorizing, the source VTs ted in Wye. Polarizing current: MTA: modeling modeling modeling modeling modeling modeling modeling modeling modeling SITIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge:- Vo mit: Ig 0 to 359° in steps of 1 $\pm 2^{\circ}$ y: 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge:> programmable threshold from 0.00 to 1.25 in steps of 0.01 vol to 1.25 in steps of 0.15 Any one/any two/all three (programmed) to operate for output (bus undervoltage only) Per voltage input y:=100 ms 1/2 0.00 to 1.25 in steps of 0.01 × VT 97 to 98% of pickup 0.01 to 60000 in steps of 0.1 s (definite time) 0.1 s				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec .Vo g 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Delarizing volta BUS UNDERVOL Minimum volta Pickup level: Dropout level: Curve: Timing accuracy OVERVOLTAGE Pickup level: Dropout level:	(phase C) 0 to 359° in steps of 1 :::2° :				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo d to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta BUS UNDERVOL Minimum volta Pickup level: Dropout level: Curve: Time delay: Phases: Phases:	(phase C) 0 to 359° in steps of 1 **2° **3° ***3°				
Angle Accuracy Operation Dela NEUTRAL DIREC NOTE: Polarized current. For volt must be connec Vo 0 to 359° in step to 40 ms GROUND / SEN NOTE: Polarized current. For volt must be connec Polarizing volta Polarizing volta Polarizing volta Polarizing volta Polarizing volta Minimum volta Pickup level: Dropout level: Curve: Time delay: Phases:	<pre>(phase C) 0 to 359° in steps of 1 ±2° ±2° ±2° to 40 ms TIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. Polarizing outrage: NTIVE GROUND DIRECTIONAL by voltage, current, or both voltage and age element polarizing, the source VTs ted in Wye. ge: V0 mit: Ig 0 to 359° in steps of 1 ±2° ts 25 to 40 ms TAGE 1/2 AND LINE UNDERVOLTAGE 3/4 ge: programmable threshold from 0.00 to 1.25 in steps of 0.01 × VT 0.00 to 1.25 in steps of 0.01 × VT 0.00 to 1.25 in steps of 0.1 s Any one/any two/all three (programmed) to operate for output (bus undervoltage only) Per voltage input y=100 ms V2 Out 6.20 on s COL 1.25 in steps of 0.01 × VT 97 to 98% of pickup Out 0.00 on is steps of 0.1 s (definite time) Any one/any two/all three (programmable) three (programmabl</pre>				

NEGATIVE SEQU	ENCE VOLTAGE						
Pickup level: Dropout level:	0.00 to 1.25 in steps of 0.01 × VT 97 to 98% of pickup						
Time delay:	0.0 to 6000.0 in steps of 0.1						
Level accuracy:	(definite or inverse time) 3 × voltage input error						
Timing accuracy:±100 ms							
UNDERFREQUE	NCY 1/2 e:0.00 to 1.25 in steps of 0.01 x VT						
	in phase A						
Pickup level: Dropout level:	20.00 to 65.00 in steps of 0.01 Hz Pickup + 0.03 Hz						
Time delay:	0.00 to 600.00 in steps of 0.01 s						
(definite time) Level accuracy: ±0.02 Hz							
Timing accurac At 60 Hz:	±25 ms						
At 50 Hz:	±30 ms						
NEUTRAL DISPL Pickup level:	0.00 to 1.25 × VT in steps of 0.01						
Dropout level:	97 to 98% of pickup						
Curves:	ANSI Extremely/ Very/ Moderately/ Normally Inverse, Definite Time						
	(0.1 s base curve), IEC Curve A/B/C and Short, FlexCurve. A/B (program-						
	mable curves), IAC Extreme/ Very/						
	Inverse/Short r: 0 to 100.00 in steps of 0.01						
Reset type:	Instantaneous/Linear 3 × voltage input error						
Timing accuracy							
REVERSE POWE							
Pickup level: Dropout level:	0.015 to 0.600 × rated power 94 to 95% of pickup						
Reset time:	less than 100 ms see 3 & Real Power metering						
Time delay:	0.0 to 6000.0 s in steps of 0.1						
Timing accuracy time)	y: ±200 ms (includes Reverse Power pickup						
BREAKER FAILU							
Pickup level: Dropout level:	0.05 to 20.0 x CT in steps of 0.01 97 to 98% of pickup						
Time delay:	0.03 to 1.00 s in steps of 10						
Timing accuracy: Level accuracy:							
METERING CURRENT							
	Phase A RMS current						
CURRENT Phasors:	Phase B RMS current Phase C RMS current						
CURRENT	Phase B RMS current Phase C RMS current						
CURRENT Phasors: % of load-to-tri VOLTAGE	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale						
CURRENT Phasors: % of load-to-tri	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage						
CURRENT Phasors: % of load-to-tri VOLTAGE	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curracy:						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level of	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curacy: ±1.5% of full scale						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±1.5% of full scale ±0.75% of full scale						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS fouracy: ±1.5% of full scale curacy:						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Current level ac Current and vol 3 & POWER FAC	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curacy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2.75%						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS icuracy: ±0.75% of full scale tage angle accuracy: ±2°						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 • POWER FAC Range: Accuracy: 3 • REAL POWE	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curacy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2.75% 0.00 Lag to 1.00 to 0.00 Lead ±0.02 K						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS recuracy: ±0.75% of full scale tage angle accuracy: ±2° TOR 0.00 Lag to 1.00 to 0.00 Lead ±0.02						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2.75% full scale full sca						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS iccuracy: ±0.75% of full scale tage angle accuracy: ±2° TOR 0.00 Lag to 1.00 to 0.00 Lead ±0.02 R -3000.0 to 3000.0 MW ±1% of full scale						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REACTIVE P Range:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2° TOR 0.00 Lag to 1.00 to 0.00 Lead ±0.02 K -3000.0 to 3000.0 MW ±1% of full scale -3000.0 to 3000.0 Mvar ±1% of full scale 2000ER						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current nudeval Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REACTIVE P Range: Accuracy:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±1.5% of full scale curacy: ±1.5% of full scale ±0.75% of full scale ±2° TOR 0.00 Lag to 1.00 to 0.00 Lead ±0.02 R -3000.0 to 3000.0 MW ±1% of full scale 0000 Lag to 1.00 to 0.00 Lead ±0.02						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REACTIVE P Range: Accuracy: 3 & APPARENT f Range: Accuracy:	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase B-N (B-C) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curacy: ±1.5% of full scale tage angle accuracy: ±2° TOR 0.00 Lag to 1.00 to 0.00 Lead ±0.02 R -3000.0 to 3000.0 MW ±1% of full scale -3000.0 to 3000.0 MVa ±1% of full scale -3000.0 to 3000.0 MVA ±1% of full scale						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APPARENT f Range: Accuracy: 3 & APPARENT f	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curracy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2.75% 0.00 Lag to 1.00 to 0.00 Lead ±0.02 R -3000.0 to 3000.0 MW ±1% of full scale COWER -3000.0 to 3000.0 MVar ±1% of full scale COWER -3000.0 to 3000.0 MVar ±1% of full scale						
CURRENT Phasors: % of load-to-tri Phasors: Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APARENT I Range: Accuracy: 3 & APARENT I Range: Accuracy: 3 & APARENT I Range: Accuracy: WATH-HOURS	Phase B RMS current Phase C RMS current p accuracy: $\pm 0.5\%$ of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase B-N (B-C) voltage Accuracy: $\pm 0.25\%$ of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ± 0.02 Hz COMPONENTS CURCOCY: $\pm 1.5\%$ of full scale tage angle accuracy: $\pm 2^{\circ}$ TOR 0.00 Lag to 1.00 to 0.00 Lead ± 0.02 R -3000.0 to 3000.0 MW $\pm 1\%$ of full scale COMER -3000.0 to 3000.0 MVA $\pm 1\%$ of full scale COMER -3000.0 to 3000.0 MVA $\pm 1\%$ of full scale -2.1×108 to 2.1 $\times 108$ MWh $\pm 2\%$ of full scale per hour						
CURRENT Phasors: % of load-to-tri Phasors: VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & APPARENT F Range: Accuracy: WATH-HOURS Range: Accuracy: VAR-HOURS	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase C-N (C-A) voltage Phase C-N (C-A) voltage A-Curacy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz A-Curacy: ±0.02 Hz COMPONENTS :curacy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale 0.00 Lag to 1.00 to 0.00 Lead ±0.02 iR -3000.0 to 3000.0 MW ±1% of full scale -2.1 × 108 to 2.1 × 108 MVh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh						
CURRENT Phasors: % of load-to-tri Phasors: Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APPARENT f Range: Accuracy: 3 & DEMAND RANG	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase B-N (B-C) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS curacy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale tage angle accuracy: ±2.75% 0.00 Lag to 1.00 to 0.00 Lead ±0.02 R -3000.0 to 3000.0 MW ±1% of full scale COWER -3000.0 to 3000.0 MV ±1% of full scale 2000 COWER -3000.0 to 3000.0 MV ±1% of full scale -2.1 × 108 to 2.1 × 108 MWh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 • POWER FAC Range: Accuracy: 3 • REAL POWE Range: Accuracy: 3 • REAL POWE Range: Accuracy: 3 • APPARENT F Range: Accuracy: 3 • APPARENT F Range: Accuracy: WAT-HOURS Range: Accuracy: VAR-HOURS Range: Accuracy: DEMAND RANG	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.02 Hz COMPONENTS iccuracy: ±1.5% of full scale tage angle accuracy: ±0.75% of full scale tage angle accuracy: ±2.75% of full scale COVER -3000.0 to 3000.0 MW ±1% of full scale COVER -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APPARENT f Range: Accuracy: 3 & APPARENT S Range: Accuracy: WATH-HOURS Range: Accuracy: VAR-HOURS Range: Accuracy: 3 & ACHOURS Range: Accuracy: CHOURS RAND RANG Phase AK/C Cu 3 & reactive	Phase B RMS current Phase C RMS current p accuracy: $\pm 0.5\%$ of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: $\pm 0.25\%$ of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: $\pm 1.5\%$ of full scale curacy: $\pm 1.5\%$ of full scale tage angle accuracy: $\pm 2.75\%$ of full scale $\pm 1.5\%$ of full scale OWER -3000.0 to 3000.0 MW $\pm 1\%$ of full scale -2.1 x 108 to 2.1 x 108 MWh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh -2.1						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & POWER FAC Range: Accuracy: 3 & POWER FAC Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & POWER FAC Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & POWER FAC Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & POWER FAC Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & POWER FAC Range: Accuracy: 3 & POWER FAC RAND FANG	Phase B RMS current Phase C RMS current p accuracy: $\pm 0.5\%$ of fullscale Phase A-N (A-B) voltage Phase B-N (B-C) voltage Phase C-N (C-A) voltage Accuracy: $\pm 0.25\%$ of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ± 0.02 Hz COMPONENTS iccuracy: $\pm 1.5\%$ of full scale tage angle accuracy: $\pm 2.75\%$ of full scale Accuracy: $\pm 2.75\%$ of full scale COMER -3000.0 to 3000.0 MW $\pm 2.\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×108 to 2.1×108 Mvarh $\pm 2\%$ of full scale per hour -2.1×100.0 to 3000.0 MW						
CURRENT Phasors: % of load-to-tri VOLTAGE Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & APPARENT f Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & APPARENT F Range: Accuracy: 3 & APPARENT S Range: Accuracy: 3 & APPARENT S RANGE ACCURACY ACURA	Phase B RMS current Phase C RMS current p accuracy: ±0.5% of fullscale Phase A-N (A-B) voltage Phase C-N (C-A) voltage Phase C-N (C-A) voltage Accuracy: ±0.25% of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ±0.75% of full scale curacy: ±1.5% of full scale tage angle accuracy: ±2.75% of full scale COVER -3000.0 to 3000.0 MW ±1% of full scale -2.1 × 108 to 2.1 × 108 MVh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour -2.1 × 108 to 2.1 × 108 Mvarh ±2% of full scale per hour Errent: 0 to 65535 A -3000.0 to 3000.0 MVa power: -3000.0 to 3000.0 MVa tpower: -3000.0 to 3000.0 MVa						
CURRENT Phasors: % of load-to-tri Phasors: Phasors: FREQUENCY Measured: Range: SYMMETRICAL C Current level ac Voltage level ac Current and vol 3 & POWER FAC Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REAL POWE Range: Accuracy: 3 & REACTIVE P Range: Accuracy: 3 & PEACTIVE P Range: Accuracy: 3 & PAPARENT f Range: Accuracy: 3 & PAPARENT A Range: Accuracy: 3 & PAPARENT A RANGENT	Phase B RMS current Phase C RMS current p accuracy: $\pm 0.5\%$ of fullscale Phase A-N (A-B) voltage Phase C-N (C-A) voltage Phase C-N (C-A) voltage Accuracy: $\pm 0.25\%$ of full scale A-N (A-B) bus and line voltage 16 to 65 Hz Accuracy: ± 0.02 Hz COMPONENTS icuracy: $\pm 1.5\%$ of full scale tage angle accuracy: $\pm 2.75\%$ of full scale OWER -3000.0 to 3000.0 MW $\pm 1\%$ of full scale -2.1 x 108 to 2.1 x 108 MWh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour -2.1 x 108 to 2.1 x 108 Mvarh $\pm 2\%$ of full scale per hour Example : Firent: 0 to 65535 A -3000.0 to 3000.0 MVa JREMENT mittal, 90% response time						

MONITORING	
PHASE/NEUTRAL CUI	
Pickup level:	0.05 to 20.00 × CT in steps of 0.01
Dropout level:	97 to 98% of pickup
Time delay:	0 to 60000 s in steps of 1 (Definite Time)
Level accuracy: Timing Accuracy:	per current input ±100 ms
POWER FACTOR	1100 m3
Required voltage:	>30% of nominal in all phases
Pickup level:	0.50 lag to 0.50 lead in steps of 0.01
Dropout level:	0.50 lag to 0.50 lead in steps of
Time delay:	0.01 0 to 60000 s in steps of 1
	(Definite Time)
Level accuracy: Timing Accuracy:	±0.02 ±100 ms
ANALOG IN THRESHO	DLD
Pickup level:	0 to 65535 units in steps of 1
Dropout level:	2 to 20% of Pickup (programmable, under/over)
Time delay:	0 to 60000 s in steps of 1
Level accuracy: Timing Accuracy:	±1% ±100 ms
ANALOG IN RATE	
Pickup level:	-1000 to 1000 mA/hour in steps of 0.1
Dropout level:	97 to 98% of Pickup
Time delay: Level accuracy:	0 to 60000.0 s in steps of 1 ±1%
Timing Accuracy:	±100 ms
OVERFREQUENCY	0% of nominal, phase A
Pickup level:	20.01 to 65.00 Hz in steps of 0.01
Dropout level:	Pickup – 0.03 Hz 0.0 to 6000.0 s in steps of 0.1
Time delay: Level accuracy:	±0.02 Hz
Timing Accuracy:	±34 ms at 60 Hz;±40 ms at 50 Hz
DEMAND Demand accuracies	are based on less than 2 × CT and 50
to 130 V inputs.	
Measured values:	Phase A/B/C current (A), 3¢ real power (MW), 3¢ reactive power
	(Mvar), 3¢ apparent power (MVA)
Moacuromont typo:	(intel), by apparent potter (intel)
Measurement type: Thermal Exponential	l. 90% response time
Thermal Exponential (programmed):	I, 90% response time 5, 10, 15, 20, 30, or 60 min.
Thermal Exponential (programmed): Block Interval / Rollin interval (programme Block Interval with S	l, 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time
Thermal Exponéntial (programmed): Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MV pkp level: MVa pkp level: MV pkp level:	y0% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sdi 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1
Thermal Exponéntial (programmed): Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Level accuracy:	I, 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1
Thermal Exponéntial (programmed): Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MV pkp level: MVa pkp level: MV pkp level:	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sdl: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 1.1 to 3000.0 in steps of 0.1 2%
Thermal Exponential (programmed): Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sdi: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS
Thermal Exponential (programmed): Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sdi: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS
Thermal Exponinial (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 .1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits.
Thermal Exponiential (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 sect after the programme LAST TRIP DATA	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time dil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits.
Thermal Exponiential (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 sect after the programme LAST TRIP DATA	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3
Thermal Exponential (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MVa pkp level: MVa pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo RMS voltages with a : TRIP COUNTERS	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time dd: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp.
Thermal Exponiential (programmed): Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MWA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a : TRIP COUNTERS Accumulates all grou	90% response time 5,10,15,20,30, or 60 min. ng Demand, time sil: 5,10,15,20,30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% bibit features. ONITORS close circuits. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative
Thermal Exponinitial (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MWA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase	 ,90% response time 5,10,15,20,30, or 60 min. ng Demand, time site is the second of the secon
Thermal Exponiential (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MW pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of moo RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time di: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 1.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ONITORS close circuits. Dond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground
Thermal Exponential (programmed): Block Interval / Rollii interval (programme Block Interval / Rollii interval programme Block Interval with S Logic Input pulses Amps pickup level: MWA pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo. RMS voltages with a : TRIP COUNTERS Accumulates all group sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit	 ,90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 1±2% tibit features. ONITORS close circuits. bond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 1 ground
Thermal Exponiential (programmed): Block Interval / Rollii interval (programme Block Interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records revent cause, current phasor, sensit phasors, system frequ- nizing frequency, and	 ,90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 1±2% tibit features. ONITORS close circuits. bond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 1 ground
Thermal Exponinitial (programmed): Block Interval / Rollii interval (programme Block Interval / Rollii interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MWA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, system freq nizing frequency, and stamp.	 ,90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. bond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 1 and ginput level with a 1 ms time time
Thermal Exponiential (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MVa pkp level: MVa pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, system frequ nizing frequency, and stamp.	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 1 ground tive ground, and use the stamp.
Thermal Exponential (programmed): Block Interval / Rollin interval (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MVa pkp level: MVa pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a 1 TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ nizing frequency, and stamp.	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time sidi: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% Both text of the steps of the steps of 0.1 and on time and one second off time d interval. St recent trip, 4 RMS currents, and 3 1 ms time stamp. Ind, sensitive ground, neutral, negative overcurrent trips. Se EVENTS) approximation of the states and 8 output relays
Thermal Exponiential (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MW pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system freq nizing frequency, and stamp. WAVEFORM CAPTURI Data channels: Sample rate:	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time dil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative • overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 3 voltage analog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle
Thermal Exponiential (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MW pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system freq nizing frequency, and stamp. WAVEFORM CAPTURI Data channels: Sample rate:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time still: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 3 voltage uncy, synchronizing voltage, synchrol analog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or
Thermal Exponinitial (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Evel accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo. RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger source:	90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time bit 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 1.2% ibit features. ONITORS close circuits. bond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 3 voltage uency, synchronizing voltage, synchro- lanalog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or manual command
Thermal Exponinitial (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: Evel accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo. RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger source:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% bibit features. ONITORS close circuits. ONITORS close circuits. St recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 3 voltage uency, synchronizing voltages, synchro- tianalog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or manual command 0 to 100%
Thermal Exponinitial (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MW pkp level: Evel accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mon RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system freq nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity:	 1,90% response time 5,10,15,20,30, or 60 min. ng Demand, time sidi: 5,10,15,20,30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 1 ground analog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input softex and 8 output relays 16 per cycle Element pickup/trip/dropout, control/larm event, logic input or manual command 0 to 100%
Thermal Exponinitial (programmed): Block Interval / Rollin interval (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MVa pkp level: MVa pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a 1 TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ- nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 0.1 to 3000.0 in steps of 0.1 1±2% tibit features. ONITORS close circuits. both of time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 3 voltage, synchrolandig input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively
Thermal Exponential (programmed): Block Interval / Rollin interval (programmed): Block Interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo. RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ- nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity: DATA LOGGER Data channels:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 tract Demand Interval additional steps of 0.1 additional steps of 0.1 additional steps of 0.1 bibit features. ONITORS Close circuits. bond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 ans time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) Solotes current phasors, 1 ground tive ground current phasors, 3 voltage uency, synchronizing voltage, synchrotranal and 8 output relays 16 per cycle. Element pickup/trip/dropout, control/olarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively
Thermal Exponinitial (programmed): Block Interval / Rollin interval (programmed): Block Interval / Rollin interval (programme Block Interval with S Logic Input pulses Amps pickup level: MVa pkp level: MVa pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a 1 TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ- nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 tract Demand Interval additional steps of 0.1 additional steps of 0.1 additional steps of 0.1 bibit features. ONITORS Close circuits. bond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 ans time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) Solotes current phasors, 1 ground tive ground current phasors, 3 voltage uency, synchronizing voltage, synchrotranal and 8 output relays 16 per cycle. Element pickup/trip/dropout, control/olarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively
Thermal Exponential (programmed): Block Interval / Rollin interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MVa pkp level: MVa pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COIL Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo: RMS voltages with a 1 TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, system frequ nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity: DATA LOGGER Data channels: Sample rate:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 ±2% close circuits. ONITORS close circuits. ONITORS close circuits. ONITORS close circuits. and on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground ive ground current phasors, 3 voltage, uncy, synchronizing voltage, synchrolanalog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively 8 channels; same parameters as for analog outputs available Per Cycle / Per second / Per Minute / Every 51,0,15, 20, 30, or 60 min.
Thermal Exponential (programmed): Block Interval / Rollin interval (programmed): Block Interval (programme Block Interval with S Logic Input pulses Amps pickup level: MW pkp level: MVA pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo. RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequ- nizing frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity: DATA LOGGER Data channels:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 teatures. ONITORS close circuits. both of the steps of 1 me stem of the steps of 0.1 me and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 35 -Phose current phasors, 1 ground tive ground current phasors, 3 voltage uency, synchronizing voltage, synchro-tanalog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input or manual command 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively 8 channels; same parameters as for analog outputs available Per Cycle / Per second / Per Minute / Every 5,10,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm
Thermal Exponential (programmed): Block Interval (programmed): Block Interval (programmed): Construction of the second Market State	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time dit: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 10. to 3000.0 in steps of 0.1 10. to 3000.0 in steps of 0.1 10. to 3000.0 in steps of 0.1 11 to 3000.0 in steps of 0.1 12 ±2% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative ive ground current phasors, 1 ground tive ground current phasors, 1 solutage input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or mand, or data respectively 8 channels; same parameters as for analog output savailable Per Cycle / Per second / Per Minute / Every 5,10,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input, manual com- mand, or continuous
Thermal Exponinitial (programmed): Block Interval (programmed): Block Interval (programmed): Block Interval (programmed): Block Interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MVA pkp level: MVA pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity: DATA LOGGER Data channels: Sample rate: Trigger source: Trigger source: Trigger position:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time dit: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 1±2% ibit features. ONITORS close circuits. cond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 3 voltage uency, synchronizing voltage, synchrol analog input level with a 1 ms time E 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/alarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively 8 channels; same parameters as for analog outputs available Per Cycle / Per second / Per Minute / Every 5,10,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input, control/alarm e
Thermal Exponential (programmed): Block Interval (programmed): Block Interval (programmed): Construction of the second Market State	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time idi: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 0.1 to 3000.0 in steps of 0.1 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100% 2. to 16 events with 2048 to 256 1. to 100
Thermal Exponinitial (programmed): Block Interval (programmed): Block Interval (programmed): Block Interval (programmed): Block Interval (programmed): Block Interval with S Logic Input pulses Amps pickup level: MVA pkp level: MVA pkp level: MVA pkp level: Level accuracy: VT FAILURE Programmable to inh TRIP / CLOSE COLL M Detect open trip and PULSE OUTPUT Pulse output is 1 secc after the programme LAST TRIP DATA Records cause of mo RMS voltages with a : TRIP COUNTERS Accumulates all grou sequence, and phase EVENT RECORDER (2 Records event cause, current phasor, sensit phasors, system frequency, and stamp. WAVEFORM CAPTUR Data channels: Sample rate: Trigger position: Storage capacity: DATA LOGGER Data channels: Sample rate: Trigger source: Trigger source: Trigger position:	 90% response time 5, 10, 15, 20, 30, or 60 min. ng Demand, time dil: 5, 10, 15, 20, 30, or 60 min. tart Demand Interval 10 to 10000 in steps of 1 10. to 3000.0 in steps of 0.1 12% ibit features. ONITORS close circuits. ond on time and one second off time d interval. st recent trip, 4 RMS currents, and 3 1 ms time stamp. nd, sensitive ground, neutral, negative overcurrent trips. 56 EVENTS) 3-phase current phasors, 1 ground tive ground current phasors, 1 ground input level with a 1 ms time e 4 currents, 3 voltages, 14 logic input states and 8 output relays 16 per cycle Element pickup/trip/dropout, control/olarm event, logic input or manual command 0 to 100% 2 to 16 events with 4096 to 512 samples of data respectively 8 channels; same parameters as for analog input level with a 1 per Yeure You, 2, 0, 30, or 8 channels; same parameters as for analog input savailable Per Cycle / Per second / Per Minute / Every 51,0,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input savailable Per Cycle / Per second / Per Minute / Every 51,0,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input savailable Per Cycle / Per second / Per Minute / Every 51,0,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input savailable Per Cycle / Per second / Per Minute / Every 51,0,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input savailable Per Cycle / Per second / Per Minute / Every 51,0,15, 20, 30, or 60 min Pickup/trip/dropout, control/alarm event, logic input savailable

Technical Specifications (Cont'd)

INPUTS				
PHASE CURRENT IN Source CT:	1 to 50000 A primary / 1 or 5 A			
Relay input:	secondary 1 A or 5 A (specified when ordering)			
Burden:	Less than 0.2 VA at 1 or 5 A			
Conversion range:	0.01 to 20 x CT (fundamental			
Accuracy:	frequency only) at <2 × CT: ±0.5% of 2 × CT			
	at ≥2 × CT: ±1% of 20 × CT			
Overload withstan	1 second @ 80 times rated current			
	continuous @ 3 times rated current			
GROUND CURRENT	current errors: 3 × phase inputs			
Source CT:	1 to 50000 A primary / 1 or 5 A			
Delawinant	secondary			
Relay input: Burden:	1 A or 5 Å (specified when ordering) Less than 0.2 VA at 1 or 5 A			
Conversion range:	Less than 0.2 VA at 1 or 5 A 0.01 to 20 x CT (fundamental			
Accuracy:	frequency only) at <2 x CT: ±0.5% of 2 x CT			
	at <u>></u> 2 x CI: ±1% of 20 x CI			
Overload withstan	d: 1 second @ 80 times rated current			
	continuous @ 3 times rated current			
SENSITIVE GROUND				
Source CT:	1 to 50000 A primary / 1 or 5 A secondary			
Relay input:	1 A or 5 Á (specified when ordering)			
Burden: Conversion range:	Less than 0.2 VA at 1 or 5 A 0.005 to 1.000 x CT (fundamental			
-	frequency only) at <0.1 x CT: ±0.2% of 1 x CT			
Accuracy:	at <0.1 x CT: ±0.2% of 1 x CT at ≥0.1 x CT: ±1% of 1 x CT			
Overload withstan	d:			
	1 second @ 80 times rated current continuous @ 3 times rated current			
BUS AND LINE VOL	TAGE INPUTS			
Source VT: Source VT ratio:	0.12 to 600 kV / 50 to 240 V 1 to 5000 in steps of 0.1			
Relay input:	50 V to 240 V phase-neutral			
Burden:	Less than 0.025 VA at 120 V or >576 K			
Max continuous:	273 V phase-neutral (full scale) CT			
Accuracy (0° – 40°	(fundamental frequency only) Cl:			
	±0.205% of full scale (10 to 130 V)			
	±0.8% of full scale (130 to 273 V) (for open delta, the calculated phase			
	has errors 2 times those shown			
	above)			
LOGIC INPUTS Inputs:	14 contact and / or virtual,			
P	6 virtual only			
Dry contacts:	(functions assigned to logic inputs) 1000 maximum ON resistance			
	(32 VDC @ 2 mA provided by relay) 30 to 300 VDC @ 2.0 mA			
Wet contacts:	30 to 300 VDC @ 2.0 mA (external DC voltage only)			
ANALOG INPUT				
Current input:	0 - 1 mA, 0 - 5 mA, 0 - 10 mA,			
	0 – 20 mA, or 4 – 20 mA (programmable)			
Input impedance:	375 +10%			
Conversion range: Accuracy:	±1% of full scale			
TRIP AND CLOSE C	OIL MONITORING INPUTS			
Acceptable voltage Trickle current:	e range: 20 to 250 VDC			
IRIG-B INPUT	2 mA to 5 mA			
Amplitude-modula				
DC shift:	signal ratio TTL			
DC SIIIC	11L			

CONTROL						
UNDERVOLTAGE RESTOR	Trip from undervoltage 1, 2, 3					
Minimum voltage level:						
Time delay: Incomplete sequence tin Phases: Level accuracy:	0.01 0.1 to 100.0 in steps of 0.1 s time:1 to 10000 in steps of 1 min. Any one/ony two/all three (programmabile) phases have to operate for output Per voltage input					
Timing accuracy:	±100 ms					
UNDERFREQUENCY RESTORATION Initiated by: Trip from underfrequency 1 or 2						
Minimum voltage level:						
Minimum frequency leve	el: 20.00 to 60.00 in steps of					
0.01 Hz 0.1 to 100.0 in steps of 0.1 s Incomplete sequence time:1 to 10000 in steps of 1 min. Level accuracy: Per voltage and frequency input						
Timing accuracy:	±100 ms					
Specifications subject to chan	ge without notice.					
OUTPUTS						
ANALOG OUTPUTS						
followi Outp 0 - 0 - 1solation: Fully is Accuracy: ±1% of Response time: 100% i	nels; specify one of the ng output ranges when ordering; ut range Maximum load - 1 mA 12 kc - 5 mA 2.4 kc - 10 mA 1.2 kc 20 mA 600c olated full scale ndication in less than 3 power cycles ISO ms @ 60 Hz]					
SOLID STATE TRIP						
Make and carry: Output relays:	15 A @ 250 VDC for 500 ms					
Configuration:	1 TRIP: Form A 2 CLOSE: Form A 3 – 7 AUXILIARY: Form C 3 SELF-TEST WARNING: Form C					
Contact material:	Silver alloy					
COMMUNICATIONS						
Serial Ports: 300 – 2 parity,	19,200 baud, programmable					
Ethernet Port: 10Base	is® RTU or DNP 3.0 protocol eT, RJ45 Connector, ModBus® er TCP/IP					
POWER SUPPLY						
CONTROL POWER Options: LO/HI (specific LO range: DC = 20 to 6	fied when ordering) 0 V					
	8 V @ 48 – 62 Hz 00 V					

•		
	APPROVALS TESTS	
	cULus: UL508, UL1	058, C22.2.No 14
	CE: EN60255-5.	EN50263
	••	
	PRODUCTION TESTS	e exetienel test at ersei
		perational test at ambi-
		nt, reducing to-40° C and then
		ncreasing to 60° C In CT inputs, VT inputs, control power
		iputs, switch inputs, coil supervision
		utputs, and relay outputs (2 kVac for
		-minute) to safety ground.
	1	-minute/ to surety ground.
	TYDE TEETS	
	TYPE TESTS	EN60255-5
	Dielectric voltage withstand:	EN00233-3
	Impulse voltage	EN60255-5
	withstand:	LIN00233=3
	Insulation resistance:	EN60255 5
		IEC 61000-4-18 / IEC 60255-22-1
	Electrostatic	EN61000-4-2 / IEC 60255-22-2
	Discharge:	LINO1000-4-2 / ILC 00233-22-2
<i>a</i> .	RF immunity:	EN61000-4-3 / IEC 60255-22-3
g:	Fast Transient	EN61000-4-3 / IEC 60255-22-3
	Disturbance:	LINO1000-4-4 / ILC 00233-22-4
	Surge Immunity:	EN61000-4-5 / IEC 60255-22-5
	Conducted RF	EN61000-4-6 / IEC 60255-22-6
	Immunity:	EN01000-4-07 IEC 00255-22-0
	Radiated &	CISPR11 / CISPR22 / IEC 60255-25
	Conducted	CI31 N11 / CI31 N22 / IEC 00233-23
	Emissions:	
		IEC 60255-21-1
	Shock & Bump:	IEC 60255-21-2
	Siesmic:	IEC 60255-21-3
	Power magnetic	IEC 61000-4-8
	Immunity:	166 01000-4-0
	Pulse Magnetic	IEC 61000-4-9
	Immunity:	120 01000 4 5
	Voltage Dip &	IEC 61000-4-11
	interruption:	120 01000 4 11
	Ingress Protection:	IEC 60529
	Environmental	IEC 60068-2-1
	(Cold):	120 00000 2 1
		IEC 60068-2-2
	heat):	
	Relative Humidity	IEC 60068-2-30
	Cyclic:	
	EFT:	IEEE / ANSI C37.90.1
	Damped Oscillatrory:	IEEE / ANSI C37.90.1
	RF Immunity:	IEEE/ANSIC37.90.2
	ESD:	IEEE/ANSIC37.90.3
	Safety:	UL508 / UL C22.2-14 / UL1053

ENVIRONMENTAL Operating temperature range: -40° C to +60° C Ambient storage temperature: -40° C to +85° C Ambient shipping temperature: -40° C to +85° C Humidity: Operating up to 95% (non condensing) @ 55C 2

2 IP40 (front), IP20 (back)

Pollution degree: IP rating:

	AC = 20 to 48 V @ 48 – 62 Hz
HI range:	DC = 88 to 300 V
	AC = 70 to 265 V @ 48 – 62Hz
Power:	25 VA nominal, 35 VA maximum
Voltage los	ss hold-up time: 30 ms

Please refer to Multilin 750/760 Feeder Protection System Instruction Manual for complete technical sepcifications

Ordering

750/760	*	*	*	*	*	*	*	*	Description
Phase Current Inputs	P1								1 A phase current inputs
Ground Current Inputs	P5	G1							5 A phase current inputs 1 A zero sequence current inputs
Ground Current inputs		G5							5 A zero sequence current inputs
Sensitive Ground Current Input	S		S1 S5						1 A sensitive ground current input 5 A sensitive ground current input
Power Supply Options				LO HI					20 – 60 VDC, 20 – 48 VAC @ 48 – 62 Hz 88 – 300 VDC, 70 – 265 VAC @ 48 – 62 Hz
Analog Outputs					A1 A5 A10 A20				Eight 0 – 1 mA analog outputs Eight 0 – 5 mA analog outputs Eight 0 – 10 mA analog outputs Eight 4 – 20 mA analog outputs
Breaker Status LED						R G			Red breaker closed LED Green breaker closed LED
Enhancements							E T		Enhanced display, larger LCD, improved keypad Enhanced display with Ethernet 10BaseT option
Environmental Protection								Н	Harsh Chemical Environment Option

GEGridSolutions.com

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

Copyright 2015, General Electric Company. All Rights Reserved.

